

□ 385-294-9648 | vignesh.baburao@utah.edu | im vigneshbaburao

Education

M.S./Ph.D. in Mechanical Engineering

University of Utah

• GPA: 3.89/4

- Specialization: Solid Mechanics and Deep Learning
- Dissertation: Accelerating high-fidelity fracture simulations in 3D microstructures using deep learning Link
- Relevant Coursework: Machine Learning, Deep Learning, Probabilistic Machine Learning, Advanced Finite Element Analysis (FEA), Fracture & Fatigue, Continuum Mechanics, Composite Materials

B.E. in Mechanical Engineering

ANNA UNIVERSITY

• **GPA:** 9.01/10 (99.9th percentile, **University rank** holder)

Aug 2011 - May 2015 Chennai, India

Aug 2019 - Dec 2024

Salt Lake City, UT, USA

Research Experience

University of Utah | Utah Composites Laboratory | MMM Laboratory

Salt Lake City, UT, USA

RESEARCH ASSISTANT AND MENTOR

Oct 2024 - Present

- Developed a neural network-based active learning framework to predict composite delamination (leveraging data from **FEA** for training) and applied a **genetic algorithm** for inverse optimization
- Building and automating computational tools to simulate ply-level cracking in fiber-reinforced composites
- Award: Led a team of graduate students to first place in the ASC Simulation Challenge (2024) by developing a machine-learning-driven approach for composite failure prediction

University of Utah | Multiscale Mechanics & Materials Laboratory

GRADUATE RESEARCH ASSISTANT

Salt Lake City, UT, USA Aug 2019 - Aug 2024

- Developed an uncertainty quantification-informed interleaved physics-based deep-learning framework to accelerate fatigue crack growth predictions and reduce error propagation
- Developed a high-fidelity finite element framework for simulating 3D microstructurally small crack growth by integrating crystal plasticity constitutive model with Abaqus, leveraging high-performance computing resources
- Developed an **object-oriented Python** framework and **automated** FE simulation workflows, data extraction, preprocessing, and feature engineering for deep learning applications
- Trained deep learning architectures, including 3D CNNs, Bi-LSTMs, ConvLSTMs, and Transformers, using TensorFlow, Keras, and PyTorch libraries on GPUs, and conducted model interpretability using SHAP analysis
- Achieved over 100x acceleration in fracture predictions by combining FE simulations with machine learning
- Award: First place in the NIST AM Benchmark Challenge (2022) for predicting mechanical behavior of AM samples

ARCI | Advanced Nanomechanical Characterization Laboratory

SENIOR RESEARCH FELLOW

Hyderabad, India Apr 2017 - Jun 2019

- Developed and implemented an unsupervised machine learning-based methodology to accurately deconvolute nanoindentation maps, which enabled automated property extraction, later integrated into Nanomechanics Inc.'s data analysis software
- Simulated thermal fatigue and oxide growth in multilayered thermal barrier coating (TBC) systems using objectoriented finite element analysis (OOF2) and Abaqus subroutines
- Performed data analysis of high-throughput nanoindentation tests using MATLAB and established structureproperty correlations via SEM image analysis

Technical Skills

Programming Python (TensorFlow, Keras, PyTorch, Scikit-learn libraries), C++, MATLAB, Racket, Bash

AI/ML Neural Networks, LSTMs, 3D CNNs, Transformers, Genetic Algorithm, PINNs, LLMs (RAG)

Modeling & Simulation Abagus, CREO parametric, FRANC3D, DREAM.3D, Paraview

General Linux, Git, LaTeX, MS Office **Experimental** Nanoindentation, SEM, EBSD

Professional Experience

Cognizant Chennai, India

PROGRAMMER ANALYST

Feb 2016 - Mar 2017

- Enhanced the functionality and user experience of Cognizant's internal applications by implementing improvements using c# and CSS
- Provided technical support for two applications, using SQL to manage database records and user issue resolution

India Piston Rings Chennai, India

PROJECT INTERN

Dec 2014 - Mar 2015

- Conducted a **feasibility study** on repurposing waste Ni-Mo powder for plasma-sprayed piston ring coatings
- Performed mechanical testing and microstructural analysis to validate that piston rings coated with 10% recycled Ni-Mo powder met industry standards, achieving material waste reduction while enhancing profitability

Relevant Course Projects

- Developed an **LSTM-based predictive model** to forecast **semiconductor wafer processing equipment failure**, leveraging a year's worth of actual production data collected from advanced process control (APC)
- EBSD analysis of additively manufactured SS316L for generating (mis)orientation maps
- Conducted digital image correlation (**DIC**) experiments to map displacement fields near a crack tip under varying loading conditions, analyzed deformation using **Vic-2D**, and computed stress intensity factors

Publications

- **Vignesh Babu Rao**, Ashley Spear, Michael Czabaj, "A framework for simulating arbitrary 3D crack propagation in fiber-reinforced composite microstructures" (in preparation).
- **Vignesh Babu Rao**, Ashley Spear, "An Interleaved Physics-based Deep-learning Framework as a New Cycle Jumping Approach for Microstructurally Small Fatigue Crack Growth Simulations," *npj Computational Materials* (2025) (Accepted).
- **Vignesh Babu Rao**, Ashley Spear, "A Deep Learning Framework to Predict Microstructurally Small Fatigue Crack Growth in Three-dimensional Polycrystals," *Computer Methods in Applied Mechanics and Engineering 437* (2025) 117689. Paper Link
- **Vignesh Babu Rao**, Brian Phung, Bjorn Johnsson, Ashley Spear, "Statistical Analysis of Microstructurally Small Fatigue Crack Growth in Three-dimensional Polycrystals Based on High-fidelity Numerical Simulations," *Engineering Fracture Mechanics 307* (2024) 110282. Paper Link
- Mohsin Hasan, P. Sudharshan Phani, **B. Vignesh**, K. Satya Prasad, L. Venkatesh, "Adapting High-Speed Indentation Mapping for Investigating Microstructure-Property Correlations in Chromium Carbide-Nickel Alloy Coatings: Challenges and Solutions," *Surface and Coatings Technology* (2024) 131318. Paper Link
- **B. Vignesh**, W.C. Oliver, G. Siva Kumar, P. Sudharshan Phani, "Critical Assessment of High Speed Nanoindentation Mapping Technique and Data Deconvolution on Thermal Barrier Coatings," *Materials & Design 181* (2019) 108084. Paper Link

Conference Presentations

- **Vignesh Babu Rao***, Ashley Spear, "Using Deep Learning to Predict Microstructurally Small Crack Behavior in Three-Dimensional Microstructures," *TMS 2024 Annual Meeting & Exhibition*, Orlando, FL, March 2024.
- Vignesh Babu Rao*, Brian Phung, Bjorn Johnsson, Ashley Spear, "Using Deep Learning for Predicting Microstructurally Small Fatigue Crack Growth Parameters in Polycrystalline Materials," 15th International Conference on Fracture, Atlanta, GA, June 2023.
- **Vignesh Babu Rao**, Brian Phung*, Bjorn Johnsson, Ashley Spear, "Accelerating Microstructurally Small Crack Growth Predictions in Three-Dimensional Microstructures using Deep Learning," *TMS 2023 Annual Meeting & Exhibition*, San Diego, CA, March 2023.
- **Vignesh Babu Rao***, Brian Phung, Ashley Spear, "Accelerating Microstructurally Small Crack Growth Predictions in Three-Dimensional Microstructures using Deep Learning," *MMM 10*, Baltimore, MD, October 2022.
- P. Sudharshan Phani, **B. Vignesh**, G. Siva Kumar, W.C. Oliver*, "High Speed Nanomechanical Property Mapping and Data Deconvolution," *TMS 2019 Annual Meeting & Exhibition*, San Antonio, TX, March 2019.
- **B. Vignesh***, P. Sudharshan Phani, G. Siva Kumar, "High Speed Nanomechanical Property Mapping of Thermal Barrier Coating," *Second International Structural Integrity Conference & Exhibition*, Hyderabad, July 2018.