
TOPICAL REVIEW • OPEN ACCESS

Modeling process–structure–property relationships in metal additive
manufacturing: a review on physics-driven versus data-driven
approaches
To cite this article: Nadia Kouraytem et al 2021 J. Phys. Mater. 4 032002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 136.36.64.79 on 16/04/2021 at 17:22

https://doi.org/10.1088/2515-7639/abca7b
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssLTFK3U_QcDNLLuvkEkkE6o8JU_uaX_PPPN3qBBO2GUfMc82AxgdxDXwr_w2LG8A8cRypAQyGk38_Dlhvp6_xLdNcNijZtMeq2c5IhyIJK7PSROioOJTuAKvr4XNp9TyHRCmvzXTizpN29kONm54HTW_euGWsr9ihowKuQMCoX1w4keZfbswaddOhpzHpqSCnsldOSwaP9NKc3vmNIJQZLCiFnPkcNLbOe-yZNZ8v7XTHaiM_-lsY5krmPJ40DJARlnSlzSQjx6WD6_gD6wTr-&sig=Cg0ArKJSzO19nLkfKcS-&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/240/cfp.cgi%3Futm_source%3DIOPJournals%26utm_medium%3DPDFCover%26utm_campaign%3D240AbstractExtended%26utm_content%3DExtendedDeadline


J. Phys. Mater. 4 (2021) 032002 https://doi.org/10.1088/2515-7639/abca7b

Journal of Physics: Materials

OPEN ACCESS

RECEIVED

1 July 2020

REVISED

25 August 2020

ACCEPTED FOR PUBLICATION

13 November 2020

PUBLISHED

14 April 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

TOPICAL REVIEW

Modeling process–structure–property relationships in metal
additive manufacturing: a review on physics-driven versus
data-driven approaches
Nadia Kouraytem1, Xuxiao Li2, Wenda Tan2, Branden Kappes3,4 and Ashley D Spear2
1 Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT, United States of America
2 Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States of America
3 KMMD, Castle Rock, CO, United States of America
4 Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, United States of America

E-mail: nadia.kouraytem@usu.edu

Keywords: physics-driven, data-driven, process–structure–property relationships, metal additive manufacturing, digital twin

Abstract
Metal additive manufacturing (AM) presents advantages such as increased complexity for a lower
part cost and part consolidation compared to traditional manufacturing. The multiscale,
multiphase AM processes have been shown to produce parts with non-homogeneous
microstructures, leading to variability in the mechanical properties based on complex
process–structure–property (p-s-p) relationships. However, the wide range of processing
parameters in additive machines presents a challenge in solely experimentally understanding these
relationships and calls for the use of digital twins that allow to survey a larger set of parameters
using physics-driven methods. Even though physics-driven methods advance the understanding of
the p-s-p relationships, they still face challenges of high computing cost and the need for calibration
of input parameters. Therefore, data-driven methods have emerged as a new paradigm in the
exploration of the p-s-p relationships in metal AM. Data-driven methods are capable of predicting
complex phenomena without the need for traditional calibration but also present drawbacks of
lack of interpretability and complicated validation. This review article presents a collection of
physics- and data-driven methods and examples of their application for understanding the linkages
in the p-s-p relationships (in any of the links) in widely used metal AM techniques. The review also
contains a discussion of the advantages and disadvantages of the use of each type of model, as well
as a vision for the future role of both physics-driven and data-driven models in metal AM.

1. Introduction

Additive manufacturing (AM), colloquially known as three-dimensional (3D) printing, of metal parts is the
process of manufacturing a metallic bulk part in a layer-by-layer fashion following a computer aided design
(CAD). AM techniques provide a number of advantages compared to traditional manufacturing, including
the ability to consolidate parts, providing the possibility to manufacture complex geometries with less
material waste and a lower cost per part. AM techniques include a realm of processes that commonly include
a source of energy such as laser or electron beam. Then, based on the type of substrate used, AM processes are
categorized into powder bed or directed deposition. Examples of AM processes include, but are not limited
to, laser powder bed fusion (LPBF), directed energy deposition (DED), electron beam melting (EBM), etc.
Most popular metallic materials used in AM include titanium, nickel-based, steel, and aluminum alloys.

Depending on the material in use, AM processing parameters are manipulated to yield specific material
properties for a given application. AM processes allow the alteration of processing parameters, including the
source power, scanning speed, scan strategy, layer thickness, powder size and sieve number (when in use).
The large number of processing parameters available and their wide range of options or values make it
unrealistic to test for optimal processing parameters experimentally in a trial-and-error process. During the
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Figure 1. Schematic representation of (a) the data-driven and (b) physics driven approaches applied to metal additive
manufacturing in an effort to create the digital twins for 3D printed parts. Reprinted from [1], Copyright (2019), with permission
from Elsevier.

process, each alteration would also result in complicated multiphase and multiscale interaction that would
result in different structures (defects and microstructure). The complex AM processes have been shown to
result in non-homogeneous microstructures, which are expected to result in variability in the material’s
mechanical properties. Hence, it is naive to evaluate the process–structure–property (p-s-p) relationships in
AM solely by trial and error. Instead, numerical approaches provide a powerful tool in evaluating the p-s-p
relationships of a digital twin of an additively manufactured metallic part.

Numerical modeling of the AM processes, resulting structures, and subsequent properties supports
experimental studies in the quest for achieving optimal printed parts with tailored properties. Numerical
modeling of the p-s-p relationship encompasses two types of approaches: physics-driven and data-driven, as
shown in Figure 1. In the physics-driven approach, a more traditional approach to simulate manufacturing
processes, the p-s-p relationships are simulated using constitutive equations and mathematical relationships
that describe the underlying physics of the problem. Whereas, in the data-driven approach, which has been
gaining interest recently as the fourth science paradigm [2–4], available data (from experiments, simulations,
or a combination of the two) are used to identify correlations between the selected inputs and outputs
needed to model a given phenomenon. A number of studies that have used both approaches to investigate
the p-s-p relationship in metal AM (MAM) are reviewed herein. The review article is divided into
physics-driven (section 2) and data-driven (section 3) approaches. Under each section, each branch of the
p-s-p relationships will be presented separately, followed by the three-way p-s-p relationship. The review is
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Figure 2. Schematic illustrating the fundamental p-s-p-performance relationship for materials with a focus on simulation tools
applicable to AM. Reproduced from [6]. CC BY 2.0.

Figure 3.MAM associated time and length scales. Reprinted from [5], Copyright (2017), with permission from Elsevier.

followed by a discussion of the advantages and disadvantages of each approach and recommendations for the
MAM community for both approaches moving forward.

2. Review on available physics-driven p-s-p literature

Modeling of the MAM p-s-p relationships requires the integration of phenomena that occur at different
associated time and length scales, as envisioned by Francois et al [5] and shown in figure 3. Process modeling
investigates phenomena on the mesoscale and macroscale; whereas, structure modeling focuses on the
mesoscale and microscale, and performance modeling generally on the macroscale. In terms of techniques
used in the physics-driven methods to explore the p-s-p relationships, multiple fundamental relationships
for materials are usually implemented, as detailed by Rodgers et al [6] and depicted in figure 2. In this section
of the review, physics-driven models are further split by specific links that are made between process and
structure (section 2.1), structure and property (section 2.2), and p-s-p (section 2.3) (in which some have
modeled directly the link between process and property).

2.1. Process-structure relationship
Modeling the process-structure (p-s) relationship in MAM involves computational techniques that were
established to model traditionally manufactured metals, welding processes that translate to MAM, and, in
some cases, specific MAM processes. In process modeling, the physical variables are predicted as a function
of space and time during the MAM process. Due to the fact that the MAM process is a multi-scale process,
process models can be subcategorized into mesoscale models and macroscale models [7].

Mesoscale models resolve the geometry of individual particles and predict the temperature, pressure, and
fluid flow (velocity) field when the source interacts with the particles [8–11]. The calculation of these
physical variables is achieved using computational fluid dynamics (CFD) simulations, which numerically
solve a set of partial differential equations (PDEs). In order to distinguish the geometry of particles and
molten pool, the interface between the metal phase and the gaseous phase needs to be captured. That has
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been achieved by a variety of interface capturing techniques for multi-phase CFD simulations. Thermo-fluid
physics in the building process, such as surface tension, Marangoni effects, laser absorption, and metal
evaporation, can be incorporated into the model through special treatment of the boundary conditions and
source terms when solving the PDEs. These multiphysics considerations enable the model to predict key
physical events, e.g., balling [9–11], keyholing [12, 13] and spattering [14], that lead to mesoscale defects
such as lack-of-fusion and porosity [15]. Therefore, mesoscale process models can play a crucial role in
quantitatively understanding the formation of these defects.

Macroscale models implement simplifying assumptions of the physics to relieve the computational costs
and allow to simulate the building process of an entire part. A major simplification is to treat the metal phase
as a continuum without resolving individual particles or the fluid flow in the molten pool [7]. The
temperature and stress/strain fields in the part during its building process can be predicted with a
thermo-mechanical approach [16]. The macroscale models have shown to predict with considerable
accuracy the residual thermal stress/strain after the part is finished [17, 18]. With this predictive power, the
macroscale models have been used to optimize process parameters [19]. Compared with mesoscale models,
macroscale models are more relevant to solve practical problems but have reduced physical fidelity. The
hybrid macroscale-mesoscale modeling approach is a prominent way to balance physical fidelity and
practicality [20].

Efforts of structure modeling have been primarily focused on two length scales, mesoscale and
microscale. Mesoscale modeling predicts the grain structure resulting from the solidification of the metal,
while microscale modeling predicts sub-grain features such as dendrite morphology and phase distribution.

Mesoscale models are used to predict the grain structure in MAM based on either the cellular automata
(CA) [21–23] or the Monte Carlo method [24, 25]. The temperature field is a necessary input for the model,
and the temperature reduction during solidification is the thermodynamic driving force for nucleation and
grain growth to occur. The CA and Monte Carlo methods use different algorithms to predict grain structure
evolution based on the temperature information. Each method has its own advantages and disadvantages,
and they appear to have comparable popularity in literature. The mesoscale models can reproduce typical
grain structures observed in experiments and have shown to capture several key mechanisms of grain
structure formation, including the epitaxial nucleation and growth, bulk nucleation, competitive growth,
and columnar-to-equiaxed transition. This modeling capability may potentially facilitate the process design
to achieve site-specific control of grain structures [26].

Microscale models primarily simulate the evolution of sub-grain microstructure morphologies (e.g.,
dendrite) and/or phase transformation during solidification based on given temperature history. Phase field
is arguably the most widely used method to simulate the sub-grain microstructure evolution for AM
processes [27–31]. The method is composed of a set of thermodynamically based PDEs. It is applicable to
fairly complex metal alloy systems if the thermodynamic descriptions of the systems are available, usually
from the CALPHAD (calculation of phase diagram) database. The computational costs for the phase field are
rather demanding, which limits the simulations to relatively small spatial and temporal domains.

2.2. Structure-property relationship
Structure-property (s-p) modeling is based on the use of solid-mechanics models to link structure to
properties in MAM. In this case, constitutive equations from continuum mechanics are used to describe the
evolution of plasticity and, in some cases, damage. The constitutive equations are solved over the simulation
domain using numerical methods like the finite-element method (FEM) or fast Fourier transform (FFT)
method. In MAM, efforts have been broadly divided into three types of predictions. In the first one,
conventional continuum-based modeling is used to predict mechanical properties of AM structures,
disregarding any types of AM defect structures. In the second modeling approach, defect structures (e.g., gas
porosity, lack-of-fusion) in MAM are incorporated. In the third modeling approach, the underlying crystal
structure of the MAM part is incorporated.

Many researchers have performed s-p predictions for AM parts by neglecting the process modeling and
excluding any defects and crystal structure resulting from the AM process, thereby treating the part as a
conventional, continuum domain absent voids. In an application to lattice components, a number of
investigations simulated the mechanical response of AM lattices [32–34] by modeling the geometry of the
component, treating each strut as a material continuum. Specifically, Hedayati et al [33] investigated the
fatigue behavior of an open-cell lattice component with AM Ti-6Al-4V mechanical properties using FEM.
Similarly, work by Andani et al [34] compared experimentally measured and simulated elastic moduli of
NiTi open-cell lattice components with a user material subroutine in Abaqus. Another recent effort in which
researchers modeled the mechanical response of an AM component treated as a continuum is highlighted in
the Third Sandia Fracture Challenge [35–44]. In the challenge scenario, participants were tasked with
predicting ductile fracture in an AM 316L part geometry containing multiple internal features, including
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Figure 4. Flowchart describing the algorithm used to generate random samples of initial porosity and convert it to initial
void-volume faction. Probability density of pore diameter, and a sample of the quarter symmetry challenge specimen geometry
with void volume fraction initialized by random porosity. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: [Springer Nature] [International Journal of Fracture] [44] (2019).

angled channels, a hole, and a large void. Most of the participants modeled the AMmaterial as a continuum,
neglecting to explicitly include details like pore structure, surface roughness, and grain structure, which were
provided. Because most of the mechanical response of the AM part was governed by the large-scale
geometrical features of the part, many of the teams were able to perform reasonably well in the blind
challenge, despite neglecting to model the p-s-p relationships explicitly.

In the second type of modeling approach to investigate the s-p link, multiple efforts have incorporated
defect structures in the MAM structure. A number of studies simulate the stress distribution over synthetic
grain and/or pore structures under certain loading conditions and predict the effective mechanical properties
of the simulated materials [45–47]. In the context of the Sandia Fracture Challenge, one team [44] accounted
for AM-induced pore structure in their solid–mechanics simulations. The team leveraged x-ray computed
tomography data (which was provided to all participants) to initialize an element-wise value of a damage
parameter based on the local pore volume to element volume by juxtaposing the tomography data with a
finite-element mesh as shown in figure 4. Another effort [42] adopted a similar constitutive model to
incorporate the effects of AM-induced void defects in their predictions with more accurate prediction
results. In another effort, Erickson et al [48] established a new, unique descriptor of pore structures that
shows a promising relationship with a variety of mechanical properties. The new descriptor is based on a
radial distribution function that takes into account the sizes, clustering, and locations of pores within a
specific part. The maximum value of the radial distribution function (or the location of the maximum value)
was shown to have a stronger correlation with ultimate tensile strength, elongation, toughness modulus, and
fracture location than any of the pore metrics previously reported in the literature.

Finally, there have been recent efforts in physics-driven, s-p modeling to incorporate the crystal structure
of the AMmaterial into predictions of mechanical properties. Work by Ozturk and Rollett [49] provides an
example of modeling the s-p relationships using statistically representative volumes of AM Ti-6Al-4V
microstructures. The microstructural instantiations were created in DREAM.3D [50] using grain-scale
statistics for AM Ti-6Al-4V from the literature. Subsequently, an elasto-viscoplastic FFT code was used to
simulate the full-field micromechanical response and corresponding homogenized stress–strain curve of
each volume. In another approach, Ahmadi et al [45] simulated an AMmicrostructure by repeating a
melt-pool geometry with a grain structure generated via Voronoi tessellation. They predicted the effective
stress–strain response of the polycrystalline domain using finite-element modeling with cohesive elem-
ents along the melt-pool interfaces and compared the results to experimental observations. Likewise,
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Figure 5. Physics-driven framework developed by Herriott et al to investigate the process–structure–property relationship in
MAM. Reproduced from [55]. © IOP Publishing Ltd. All rights reserved.

Andani et al [46] used a similar grain-structure model but investigated the response of representative volume
elements of interest within the simulated microstructure. While the above works consider a simulated AM
microstructure in the mechanical simulation, none used physics-based process modeling to predict the
microstructure. The accuracy of all s-p predictions described in this section hinged upon rigorous selection
and calibration of the material constitutive model(s) used to represent the mechanical behavior of the AM
material, which is further discussed later in the manuscript.

2.3. Process-structure-property relationship
In MAM, the investigation of the p-s-p relationships is not limited to the three-way relationship paradigm. A
number of efforts bypassed the (micro)structure prediction, and the physics-based model was used to
predict, for example, the thermal history during the process followed immediately by a prediction of the
residual stress field and part distortions [51–54]. In the work by Johnson et al [52], the transient temperature
field was first solved over a finite-element mesh for a 304L stainless steel tube manufactured using laser
engineered net shaping (LENS). Output from the thermal model was then used to predict the
thermo-mechanical strain as a function of temperature-dependent material properties and, finally, the
residual-stress state was predicted using an assumed constitutive model.

While the above modeling efforts focus on modeling either the first link, last link, or bypass the structure
link in the p-s-p lifecycle, there are modeling approaches that capture the complete lifecycle from process to
mechanical properties for MAM. In this area, Yan et al [47] implemented a framework that, given the
processing parameters, predicts using FEM a number of mechanical properties (e.g., yield strength and
fatigue) of the simulated microstructure. The process (powder bed flow, heat transfer, and fluid flow) and
structure (grains and voids) are modeled and incorporated into the framework. Rodgers et al [6], used direct
numerical simulations to simulate tensile loading on multiple hollow cylindrical structures with synthetic
microstructures ranging from equiaxed to columnar grains (by changing the processing parameters, namely
the scan speed). The 3D, synthetic voxelized microstructures were generated using the kinetic Monte Carlo
method. The resultant microstructures were mapped onto a highly refined conformal FE mesh of a part
geometry. A grain-scale anisotropic crystal elasticity model was then used to represent the constitutive
response of each grain. In a similar framework, detailed in figure 5, Herriott et al [55] implemented a
parallelized elasto-viscoplastic FFT model to predict the spatial variability of the yield strength and elastic
modulus throughout different MAM build domains, exemplified for SS316L DED build volumes. To achieve
that, four microstructural volumes, ranging from fully equiaxed to columnar, were predicted using process
modeling (viz., the CA method) to mimic different combinations of processing parameters in the DED
process. Then, the full-field mechanical response of microstructural subvolumes extracted from multiple
layers of interest within the simulated build volumes was predicted using EVPFFT. Later, the full-field
response of each subvolume was homogenized, and stress–strain curves of each subvolume were extracted
and analyzed for values of the elastic modulus and yield strength. Finally, the homogenized mechanical
properties were plotted using contour maps to investigate their location-specific variability with respect to
the laser scan tracks.

More recently, Shi et al [56] established a physics-driven framework to establish the p-s-p relationships
and tested it on a Ti-6Al-4V single-track LPBF system. The framework consists of a high-fidelity,
powder-scale, 3D simulation of transient heat transfer and melt flow dynamics (figure 6(B)), a CA
simulation of solidification grain structure and texture, phase field modeling of precipitation and dissolution
of second-phase precipitate during repeated thermal cycles as presented in figure 6(A), and
microstructure-based micro- and mesoscopic elastic response calculation (figure 6(D)). The framework was
capable of simulating concurrent nucleation, growth, and coarsening of the equilibrium α phase in a
bicrystalline β matrix (figure 6(C)).

6



J. Phys. Mater. 4 (2021) 032002 N Kouraytem et al

Figure 6. Outputs from sections of the p-s-p framework implemented by Shi et al [56]. (A) Microstructural prediction based on
the interaction among (a, b) an arbitrary Lagrangian–Eulerian-based powder-scale model to predict spatiotemporal evolution of
thermal history, (c) CA model to simulate solidification grain structure evolution (size as well as orientation), and (d) a
quantitative PF model to predict the subgrain/intragranular solid-state precipitate microstructure. (B) Time snapshots showing
the evolution of thermal profile (left column) and grain structure (right column) at t = 327 µs, t = 647µs, t = 967 µs. The laser
scan speed is 500 mm s−1, moving to the right with a power of 75 W. (C) (a) Rates for both homogeneous nucleation and
heterogeneous nucleation of α phase as function of temperature; (b)–(f) α precipitation upon cooling from 950 ◦C to 700 ◦C at a
rate of 5 ◦C s−1: (b) 860 ◦C, (c) 855 ◦C, (d) 770 ◦C, (e) 765 ◦C, (f) 740 ◦C; (g) Color scheme for all 12 α variants. (D)
Microstructure-based elastic response calculations: computed von Mises stress profiles σv in Ti-64 two-phase microstructures

under ∈appl
11 for cooling rates of (a) 5 ◦C s−1 and (b) 20 ◦C s−1; spatial distribution of the identified stress hotspots (i.e., σv> yield

strength) for the microstructures formed at the cooling rates of (c) 5 ◦C s−1 and (d) 20 ◦C s−1, and (e) evolution of hotspot

volume fractions (fHS) with increasing ∈appl
11 . Reprinted by permission from Springer Nature Customer Service Centre GmbH:

[Springer Nature] [JOM Journal of the Minerals, Metals and Materials Society] [56] (2019).

Some other approaches have combined both physics-driven methods combined with experimental
support, which are not discussed in the current review. An extensive review of those efforts are detailed by
Smith et al and can be found in [57].

Physics-driven approaches provide a number of advantages and disadvantages that are discussed in detail
in section 4. Another approach to model the p-s-p relationship in MAM is data-driven models, which predict
the p-s-p relationships of MAM by correlating the expected properties to build conditions (e.g., laser
processing parameters, location of a part on the build plate, gas flow in the printer, etc.) that uniquely define
the manufacturing process. Such models utilize specific data-driven techniques such as machine learning or
data-mining algorithms, for example, to establish the p-s-p relationships and are capable of predicting the
behavior of metal components that are manufactured using specific processing parameters without the need
to explicitly identify the constitutive model governing its behavior.

3. Review on available data-driven p-s-p literature

With the availability of various types of materials-related data (mostly big data from different sources), there
has been a natural advancement in data-driven modeling techniques as a major area of research in materials
science. Data-driven modeling in materials science encompasses the overlap of the domain knowledge in
materials science, mathematics and statistics, and computer science and technology (figure 7). The
generation of big data used in these techniques is characterized by the ‘five V’s’ (volume, velocity, variety,
veracity, and value), as detailed in figure 7. Data-driven techniques in the investigation of the p-s-p
relationships in MAM are a very attractive approach.
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Figure 7. (Left) Data science as an integrative discipline. Reproduced from [82] with permission of The Royal Society of
Chemistry. (Right) Big data characteristics known as the ‘five V’. Reproduced from [83]. CC BY 2.0.

Data-driven materials modeling addresses the need to extract high-value information from many and
diverse data sources—from modeling-derived data (e.g., from density functional theory (DFT), phase field,
CALPHAD, and a range of continuum models), to experimentally derived data (e.g., mechanical, structural,
chemical, or thermal analysis) [58]. Algorithmic optimization of materials, using heuristic algorithms—such
as genetic algorithms [59] or particle swarm optimization [60]—or using machine learning algorithms—
such as Gaussian process regression (GPR) [61], artificial neural networks (ANNs) [62], or kernel ridge
regression [63], require materials data to be featurized. Featurization is the process of extracting parameters
(features) from experiment [64, 65], literature [66], or modeling/simulation data [67–69]. In the context of
MAM, data-driven approaches have been used in the investigation of the p-s-p relationships to support the
integrated computational materials engineering (ICME) effort of the scientific community in understanding
the links between each of the branches for MAM digital twins.

In the terminology of machine learning, structure, in the paradigmatic process–structure–property
relationship of materials science, represents a latent space. A stable, correlative relationship between process
and properties is all that is required in many practical applications. Although the complexity of the
process–property models are often better served by the explicit inclusion of structural information through
modeling or experiment, such as CALPHAD, phase field, DFT, microscopy, or x-ray diffraction, data-driven
algorithms provide a mathematical and modeling framework to identify process–property correlations that
implicitly account for structure. The microstructure of AM parts is complicated by the thermal history of the
additive process. As a result, only the most basic parts have a well-characterized microstructure [26], but AM
is amenable to exploration of a broad process–property space through high-throughput sample fabrication
and mechanical testing.

Data-driven methods that are used in the investigation of the p-s-p relationships in MAM include an
array of techniques that mimic human intelligence, also known as artificial intelligence. The most widely
used techniques under artificial intelligence are machine learning models that include classification,
regression, clustering, and dimensionality reduction. Another subcategory of machine learning falls under
deep learning, which incapsulates neural networks, as represented in figure 8. In the subsequent section,
recent efforts that focus on any of the branches of the p-s-p relationships using data-driven techniques will
be reviewed. As in the previous section 2 on physics-driven models, the links in this section are divided into
the relationships between process and structure (section 3.1), structure and property (section 3.2), and p-s-p
(section 3.3).

3.1. Process-structure relationship
The prediction of the p-s link in MAM using data-driven approaches is still at its infancy due to the
complexity of the problem and the multiphase, multiscale processes involved. Data-driven methods have
been used to uncover the p-s relationship by predicting phase formation in the microstructures of
traditionally manufactured metals. In fact, phase formation and microstructures are predicted by mapping
thermal processing using continuous cooling transformation (CCT) and time–temperature–transformation
(TTT) diagrams. Primarily, artificial intelligence techniques have been employed to predict CCT curves
[70–72]. Initial efforts by Wang et al [72] trained an ANN to using 151 CCT diagrams to predict the
diagrams of class Fe-xC-0.4Si-0.8Mn-1.0-Cr-0.003P-0.002 S (x within 0.1 through 0.6) steels. Similarly,
Dobrzański et al [71] trained a neural network using 400 CCT diagrams made for structural and machinable
steels. The model takes as inputs the chemical composition and austenitising temperature and predicted the
temperature of the beginning and the end of transformation as a function of cooling rate, the chemical
composition, and the hardness of steel cooled from austenitising temperature with a fixed rate which then
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Figure 8. Hierarchical description and techniques examples of artificial intelligence and its machine learning and deep learning
subfields. Reproduced from [83]. CC BY 2.0.

allow to predict the CCT diagram of the material. Using a similar approach, Trzaska et al [70] trained a neural
network and combined it with regression methods to predict the CCT curve for steel with a known chemical
composition. The method allowed the analysis of the influence of particular elements on the characteristic
points and transformation curves of the supercooled austenite using a set of 300 experimental data sets that
are available in the literature. The CCT and TTT diagram of AMmetals, however, have been shown to be
different from their traditionally manufactured counterparts. Moving forward, the aforementioned
approaches could be adapted to MAM processes and used in the prediction of the p-s relationship in MAM.

In the context of p-s linkage for MAM, Popova et al [73] presented a workflow, reproduced in
figure 9(A), that can be applied to augment computational materials science using data science approaches.
The authors also suggested a general workflow template that could be used to establish the p-s link, as shown
in figure 9(B). The blue boxes describe the general steps to achieve that (data pre-processing, microstructure
quantification, dimensionality reduction, and extraction/validation of the p-s relationship), while the white
boxes present examples of methods that can be used to achieve each. In a specific application of the
framework to MAM, the authors established a microstructural descriptor (chord length) on a synthetic
microstructure and established the p-s link using distribution calculation, principal component analysis, and
multivariate polynomial regression methods. In a different approach, Wang et al [74] successfully trained a
two-level surrogate model based on 280 thermal simulations and 150 grain growth simulations to predict
temperature profile and materials microstructures. The authors quantified the sensitivity of the material
microstructure to specific heat capacity and grain growth activation energies and its uncertainty
quantification and presented optimal combination of process parameters for EBM Ti-6Al-4V.

Data-driven approaches have been also used to identify microstructural features and defects in MAM
structures using in situ data. Combining acoustic emission (recorded using a fiber Bragg grating sensor) and
training a neural network, Shevchik et al [75, 76] performed in situ quality monitoring in MAM to identify
the formation of porosity during the build, as presented in figure 10. The inputs to the neural network were
the relative energies of the narrow frequency bands of the wavelet packet transform, and the outputs of the
models provided a classification of the build quality of the layer of interest with accuracy around 83%–89%.
In a different approach for the classification of in situ defect formation, other studies focused on the use of
visual data and image processing techniques. For example, Scime and Beuth [77, 78] and Caggiano et al [79]
employed classification techniques in identifying defects such as keyhole-induced pores and balling from in
situ process images. Both investigations implemented convolutional neural networks to identify and classify
the types of defects in the printed layer. More details of the employed techniques can be found in the
flowcharts in figures 11(A) [79] and (B) [78]. Other classification efforts focused on the identification of
microstructural features [80] and identifying feedstock powder source and type for AM metals [81] based on
images of the microstructure.

After printing, MAM parts have been shown to exhibit geometrical deviations post solidification
compared to the intended design (CAD model). Such deviations in the geometry from the initial design may
limit the certification and qualification of MAM parts, especially in applications where qualification
requirements are stringent. To control the geometrical fidelity of MAM parts, Koeppe et al [84] trained a
neural network based on FEM simulation results of MAM cell structures to predict load-displacement curves
and maximum stress, which were validated using experimental results. The neural network was then used to
reproduce the loading history of the FEM simulation and later as a substitute for the physics-driven
simulations.
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Figure 9.Workflow template for establishing process-structure linkages using a data science approach. (A) A schematic
description of the workflow typically employed in current computational materials science efforts (top row) and how this can be
augmented with a data science approach to recover computationally low-cost, high-value p-s-p linkages of interest to materials
innovation efforts. (B) Workflow template for establishing p-s linkages using a data science approach. Blue boxes describe general
steps while corresponding white boxes list example methods that can be used within a step. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: [Springer Nature] [Integrating Materials and Manufacturing Innovation] [73]
(2017).

3.2. Structure-property relationship
Fewer efforts have been invested in the exploration of the s-p relationship in MAM using data-driven
approaches as compared to the physics-driven approaches. In an effort to comprehend the s-p link, Gupta
et al [85] proposed a general data-driven framework to investigate the aforementioned branch as detailed in
figure 12. The framework consists of three steps that start with the generation of a calibration dataset
consisting of representative microstructures (either from measurements or generated synthetically) and their
subsequent mechanical response (from an established physics-based numerical model, or experimental
results). The second step consists of extracting objective, reduced-order (based on principal component
analysis), quantitative measure(s) of the microstructure. In the third and final step, the s-p linkages are
established using regression methods and then validated using leave-one-out-cross-validation. The authors
evaluated the framework on non-metallic inclusions/a steel composite system and compared it to results
from conventional linkage techniques. The results demonstrated high accuracy of the surrogate model that
was based on the data-driven framework compared to the conventional approaches. Moving forward, the
presented framework could also be applied to s-p data that is available in the MAM literature to establish
those linkages.

In a different approach, recent efforts applied machine learning techniques to predict the mechanical
properties of given metallic microstructures [86–88]. Even though these efforts have been presented for
non-additively manufactured materials, the approaches present powerful tools for potential applications in
MAM. In the first effort, Jung et al [86] employed the GPR method to predict the full-field response of
two-phase microstructures generated with periodic boundary conditions using DREAM.3D. Over 1100
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Figure 10. Scheme of the AM quality monitoring and analyzing system using acoustic data. The workflow is as follows: an
acoustic signal is emitted during the AM process and captured by sensors; an SCNN model is finally applied to the recorded data
to distinguish whether the quality of the printed layer is adequate or not. Reprinted from [75], Copyright (2018), with permission
from Elsevier.

Figure 11. Data-driven methods used in the identification of defect formation using optical imaging data. (A) Flowchart of the
Bi-stream DCNN for recognition of defects induced by improper SLM process conditions employed by Caggiano et al [79].
Reprinted from [79], Copyright (2019), with permission from Elsevier. (B) the machine learning process implemented by Scime
and Beuth [78] for in situ classification of defects. Reprinted from [78], Copyright (2018), with permission from Elsevier.

different synthetic microstructures were used to predict the uniform elongation, ultimate tensile strength,
and strain localization index defined in the soft phase of each microstructure and later validated using
another 1000 microstructural instantiations. The accuracy of the surrogate model was calculated as relative
error from finite element simulation results and showed that as little as 40 training points were enough to
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Figure 12.Main components of the data-science approach utilized by Gupta et al for establishing structure-property linkages.
Reprinted from [85], Copyright (2015), with permission from Elsevier.

decrease the error between the surrogate and finite element models to less than 1%. The authors also
employed the Efficient Global Optimization method, a Bayesian optimization technique that utilizes an
expected improvement algorithm to maximize an unknown black-box objective function to predict the
optimal microstructure in the dual phase steel to result in the targeted material properties. The results were
shown to predict with high accuracy using a relatively low number of inputs. In a different approach, Mangal
and Holm predicted the formation of stress hotspots in face centered cubic materials [87] and hexagonal
close packed materials [88] under uniaxial tensile deformation by integrating full-field crystal
plasticity-based deformation models and machine learning techniques as summarized in figure 13. In both
studies, synthetic microstructural data were generated using DREAM.3D [50]. The local micro-mechanical
fields under uniaxial tensile deformation were then simulated using a 3D full-field, image-based, FFT
technique, and stress hotspots were defined as grains having stress values above the 90th percentile of the
stress distribution. Then, hotspots were characterized using metrics that reflect local crystallography,
geometry, and connectivity. The data were used to create input feature vectors to train a random forest
learning algorithm, which predicted the grains that will become stress hotspots. Other work, tailored
specifically towards MAM, have also investigated hotspots in build structures with respect to the processing
parameters.

In a similar approach tailored towards MAM, Herriott and Spear [89] utilized the results from their p-s-p
framework discussed in section 2.3 to establish a data-driven model that predicts the s-p link in four AM
SS316L build domains exhibiting vastly different microstructures. The main purpose of the data-driven
method is to omit the high cost and computational time associated with the crystal-plasticity physics-driven
method. To predict the s-p relationship, machine-learning (Ridge regression and XGBoost) and
deep-learning (convolutional neural networks) models were trained using microstructural inputs as features
and the effective mechanical properties (calculated from the full-field response resulting from the crystal
plasticity FFT method) as targets. Output predictions of the effective yield strength in a certain loading
direction were then tested for build layers that were omitted from the training set of different MAM build
domains. The results were compared to a reference property map (generated using the physics-driven
model). An example of the output from the machine- and deep-learning models are presented in figure 14.
Among all of the data-driven models tested, the deep-learning models that use crystal orientation as the
primary input significantly outperform all other models considered, achieving an R2 value upwards of 0.86
in blind predictions of the holdout layers for two different MAM build domains. Furthermore, the
deep-learning models offer the benefit of requiring very little pre-processing and feature extraction, instead
allowing the model, itself, to extract relevant higher-level features from the microstructural image data. In all
cases, the data-driven approach was capable of predicting the properties in a matter of seconds once trained.

In another application that is based on the use of structure data, Kantzos et al [90] trained a
convolutional neural network to predict stress concentration of rough surfaces, which are detrimental to
fatigue life of MAM parts. The model was trained using the elasto-viscoplastic FFT stress field results of a
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Figure 13. Data-driven frameworks utilized by Mangal and Holm to predict hotspots in (A) FCC materials. Reprinted from [87],
Copyright (2018), with permission from Elsevier. (B) HCP materials. Reprinted from [88], Copyright (2019), with permission
from Elsevier.

database of 512 synthetically generated surface height maps (figures 15(A) and (B)) that mimic the surface
roughness of AMmetals and predicted the strain energy metric for each surface. The images were augmented
to 1536 data points by performing transformations on the data (rotations and mirroring), and the results
showed that the convolutional neural network was able to achieve predictions with an R2 value around 0.75
over surfaces that were unknown to the trained model (figure 15(A)). One interesting contribution of this
work is the integration of a ‘viewpoint’ within the convolutional neural network for better interpretability by
looking at the activation of the second convolution layer, as shown in figures 15(B)(d).

In a review of the efforts undertaken by GE, Aggour et al [91] detailed GE’s current efforts to implement
artificial intelligence and machine learning methods to manufacturing techniques (both traditional and
additive) to support design, processing, and inspection. In terms of MAM, GE presented a framework
utilizing probabilistic machine learning and intelligent sampling and optimization protocols, coupled with
high-throughput printing, testing, and characterization tools to accelerate process parameter development
for LPBF MAM [92]. The process optimization framework was tested on the crack-susceptible Nickel-based
alloys used in high temperature locations of aircraft engines. The protocol is based on a Bayesian hybrid
model [93, 94], which utilizes a Gaussian process to develop a predictive, data-driven modeling technique,
and the GE intelligent design and analysis of computer experiments, as shown in figure 16. The initial model
is built with key inputs that are dependent on the processing parameters in use (e.g., laser power, scan speed,
hatch spacing, and beam spot size), along with initial constraints and experimental results. In addition to
predicting mean values of the model response, the data-driven model also provides uncertainty in the model
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Figure 14. Comparison of property maps (viz., effective yield strength in the transverse direction) models for the holdout layer
indicated in Build Domain D, predicted by: (A) different machine-learning models trained with 33–35 microstructural
descriptors: (a) for reference, property map generated using crystal-plasticity modeling; (b) ridge regression, excluding Mmicro

from training set; (c) ridge regression, including Mmicro in training set; (d) XGBoost, excluding Mmicro from training set; (e)
XGBoost, including Mmicro in training set. Both models are able to recover the banded pattern present in (a). (B) Deep-learning
models: A–(a) for reference, property map generated using crystal-plasticity modeling; (b)–(e) CNNs with grain ID as the main
feature in the training data; (f)–(i) CNNs with quaternion as the main feature in the training data. Auxiliary features used to train
each model include: (b),(f) none; (c),(g) one-hot vector representing the global loading direction; (d),(h) Schmid factor; (e),(i)
micromechanical Taylor factor. Vertical black lines correspond to laser scan tracks. Reprinted from [89], Copyright (2020), with
permission from Elsevier.

response. The uncertainty data is then used to iteratively identify new process parameter combinations for
test coupons and builds. The framework has been used to minimize the model uncertainty or optimize
quantities of interest such as porosity and mechanical properties and was shown to improve with increasing
number of iterations. Using these tools, LPBF AM process parameter development cycle time has been
reduced by about four times, as shown in figure 16(B) (from [95]), leading to significant savings in material
cost, labor, and machine resources compared to traditional design-of-experiment methods. In a different
application of part repair using AM, GE used machine learning to define toolpaths (physical path through
which the spray nozzle moves when applying material) during a cold-spray process to improve yield and
reduce manufacturing time and cost. To perform the repair, GE incorporated artificial intelligence to guide
the 12 degree-of-freedom robotic arm movements and allow the robotic arm to adjust in situ to deliver high
quality builds of parts such as aviation airfoils. Furthermore, GE shares their experience where the cold-spray
deposition process may be improved by incorporating in situ 3D scanning of the deposition surface to
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Figure 15. (A) Graphs showing the prediction of the strain energy metric for the 1536 training images in (a), the 128 reserved
validation data, and the 64 test images. The R2 value for each image is shown in the title of the graph. The high R2 value for the
test images (0.75) suggests that the CNN is capable of predicting the stress concentration metric for surfaces it has never seen. (B)
Example of a single image. Section (a) shows the scaled and padded height map, and the stress field is shown in section (b) with
the corresponding stress concentrations shown in (c). Section (d) shows the activation of the second convolution layer (Conv2),
where the bright areas correspond to the stress concentrations shown in (c). Reprinted from [90], Copyright (2019), with
permission from Elsevier.

intelligently modify the toolpaths on the fly, completing the deposition process more quickly using less
material.

3.3. Process-structure-property relationship
To establish the p-s-p relationships for MAM, Yan et al [96] proposed a vision for the use of a data-driven
multi-scale multi-physics framework, detailed in figure 17. The framework aims at quantitatively predicting
the working performance of the final MAM products from given manufacturing parameters for a range of
AM technologies (EBM, LPBF, and LENS) by combining process modeling, mechanical modeling, and data
mining. The inputs to the model are derived from physics-driven models for all three links (process,
structure, and property). Data mining is then used in a cycle of design–predict–optimize, and the
preliminary results were validated experimentally. In the future, real-time monitoring is envisioned by Yan
et al as a means to validate the numerical models.

In another effort, Wang et al [97] employed a physics-informed data-driven surrogate model applicable
for MAM EBM technique. Surrogate models for each of the process, structure, and property links were
trained using data from physics-driven results. Namely, the meltpool was simulated using FEM (280 thermal
simulations), grain growth was modeled using the phase-field method (150 grain growth simulations), and
the properties were predicted using the FFT crystal plasticity method (150 elasto-viscoplastic FFT
simulations) as shown in figure 18(A). The authors then trained a Gaussian process model to serve as a
surrogate model for each of the levels (process, structure, property) and tested the model quality using
leave-one-out cross-validation, figure 18(B). Even though the authors communicated the difficulty of
generating the thermal surrogate model that is a high-dimensional response, results were shown to capture
the temperature fields with reasonable accuracy (figure 18(C)). The final step of Wang’s framework [97]
consisted of uncertainty quantification using a brute-force Monte Carlo approach, from process to property
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Figure 16. (A) Framework of the protocol outlining the process of using the GE Bayesian hybrid model (GEBHM) and the GE
intelligent design and analysis of computer experiments (GE-IDACE) in process parameter development for additive
manufacturing. (B) Example application of the GEBHM/GE-IDACE-based process parameter optimization framework for a
hard-to-process superalloy. (a) The plot shows an initial design of experiments (DoE), which is space-filling and uninform (no
models are informing the DoE). The red triangles in the next figure are suggested by the GE-IDACE based on the GEBHMmodel
built on the blue circle data set. Defects in the as-built part were measured after each DoE. (b) As noted, the DoE 2 reduced the
model uncertainty by 5% but did not suggest any datapoints that met the target defect criteria. (c) In DoE 3, the green points are
suggested by GE-IDACE based on the model built on the blue circles and red triangles. The authors have added more information
through the GEBHMmodels that by DoE 3 and saw further reduction in model uncertainty (close to 25%) and also identified a
parameter space window where more than 65% of the datapoints met the defect criteria, showing the power of the GE-IDACE
methodology of performing experimental design. [91] © Cambridge University Press. Reprinted with permission.

estimates. Sensitivity analysis was applied to a test case of EBM Ti-6Al-4V alloy, as summarized in
figure 18(D). More details about the uncertainty quantification can be found in [97].

As it is clear from the previously presented works, the scientific literature provides a wealth of modeling,
simulation, and experimental data that captures the processing, structure, and properties of materials.
Mining this information from the literature requires the development of a number of tools [98]. Using these
tools, data-driven techniques provide a powerful means to learn from ‘prior experience’. Extracting
information from the literature, Liu et al [99] built a GPR model to correlate process conditions (i.e., laser
power, laser speed, hatch spacing, layer thickness, and powder size) across seven laser powder bed machines
to density and microhardness of the finished part. Then, using this model, they predicted the build
conditions necessary to achieve target densities and microhardness on a build platform that was not part of
the original training data. This is one of many studies that leverage existing information in the scientific
literature to map process–property relationships directly [99–101].

It is worth noting that another category of data-driven models, models not captured in this review, and
not feasible to implement using physics-based models but worth mentioning due to their implementation
using data-driven approaches, are property–property models. That is, models that use measurable
properties, such as yield strength or springback, to model and predict qualitative properties (e.g., formability
and rollability). An example of these efforts, which have not yet been implemented for AMmaterials, have
looked at formability or rollability [102–105].
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Figure 17. Data-driven multi-scale multi-physics modeling framework for AM employed by Yan et al [96]. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: [Springer Nature] [Computational Mechanics] [96] (2018).

4. Discussion

At the highest level, physics-driven and data-driven models in MAM share a similar objective: to predict, for
a given set of AM process conditions, the resulting material microstructure and/or mechanical response of
the material. However, the manner in which this is achieved by each type of model is fundamentally
different, leading to advantages and disadvantages for each of the modeling approaches. The advantages and
disadvantages of both physics-driven and data-driven models used in predicting the complex p-s-p
relationships in MAM are summarized in table 1 and detailed in the following discussion.

Despite their common aim, fundamental differences exist between physics-driven and data-driven
approaches. Physics-driven modeling approaches require a set of governing constitutive equations that
represent the physical phenomena underpinning the process, structure, and property relationships.
Numerical solvers are then used to solve the governing equations over some finite domain, which can be
expensive and therefore preclude exploration of a high-dimensional MAM design space. As discussed in
depth by Lindgren and co-workers [51, 106], the proper choice of constitutive model (and corresponding
material parameters used within each constitutive model) is imperative to making accurate predictions for
both welding and, by extension, MAM. On the other hand, the training algorithms underpinning many
data-driven models, including machine-learning models, are designed to handle problems for which the
governing equations relating inputs to outputs are typically unknown a priori but rather inferred through the
correlative relationship between the control (input) variables and the response (output) variables.

Both types of modeling approaches require that the parameters embedded within the models are
calibrated; however, the calibration procedure is different between the two approaches. For physics-based
models, parameter calibration is generally performed in either an ad hoc manner or by an estimation
algorithm (for further discussion, see work by An et al [107]). Some parameter values can be obtained from
(pre-calibrated) values in the literature; while others might be calibrated through either trial-and-error or
optimization processes until satisfactory comparison with some experimental or ground-truth measure. On
the other hand, the parameters embedded within a data-driven model (e.g., the weights and biases within a
machine-learning model) are calibrated using a formalized process known as ‘training’, through which the
parameters are iteratively adjusted. For example, neural networks are typically trained/optimized with some
form of a gradient-descent algorithm.
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Figure 18. Details from the physics-informed data-driven investigation by Wang et al [97]. (A)Schematic of the framework
proposed, (B) schematic illustration of the training of the surrogate model, (C) comparison of the temperature fields from the
physics-driven and data-driven results, (D) schematic illustrating the sources of uncertainty introduced at different levels and
uncertainty propagation. Reprinted by permission from Springer Nature Customer Service Centre GmbH: [Springer Nature]
[JOM Journal of the Minerals, Metals and Materials Society] [97] (2019).

Another difference between physics-driven and data-driven modeling approaches is in their treatment of
probabilistics and uncertainty. In physics-driven models, the resulting solution to a set of governing
constitutive equations for a single simulation typically provides a deterministic prediction, whether of a
microstructural volume, a residual-stress field, or a full-field mechanical response. Of course, owing to the
inherent randomness that can be injected at different stages (e.g., the assignment of random crystal
orientations to grain-nucleation points during prediction of the phase-transformation process), one could,
in theory, run many deterministic simulations to populate a statistical model. In practice, this is generally
intractable due to the computational cost to perform even a single multi-scale, multi-physics numerical
simulation. On the other hand, data-driven models rely on the correlative relationship between the
independent variables (inputs) and the dependent variables (outputs), using statistical tools to solve for this
correlative relationship, tools built on point estimation, hypothesis testing, and statistical inference. Hence,
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Table 1. Advantages and disadvantages of physics-driven and data-driven approaches in the prediction of the p-s-p relationships in
MAM.

Physics-driven models Data-driven models

Advantages • Simulate complex multiphase phe-
nomena

• High-fidelity representation of the
underlying physics

• Results are generally interpretable

• Low computational cost
enables the exploration of high-
dimensional design space

• Predictions of complex phenom-
ena when physics are implicitly
embedded within training data

• Formalized calibration via model
training

Disadvantages • Need for input parameter calibra-
tion

• Need for simplifications
• High computational cost precludes
exploration of the complete design
space

• Valid within the limitations and
context of their original formula-
tions

• Lack of interpretability
• Complicated validation
• Potential for model bias and brit-
tleness (easy to fool)

• Valid within the limitations and
context of their original formula-
tions

many types of data-driven models (e.g., Bayesian networks) account inherently for probabilistic predictions
and various sources of uncertainty.

Even though physics-driven models face a high computational cost that could be avoided using
data-driven models, the latter methods are susceptible to bias and brittleness, depending on the type and
amount of data used in training. A biased data-driven model is one that fails to capture the trends present in
the data set used in training and as a result may lead to inaccurate predictions. On the other hand, a brittle
model (in analogy to metalworking) is one that is less malleable to a wide range of data besides the
assumptions made over the training data. Therefore, a brittle model may be easily fooled if those assumptions
are not stated, hence not met by the input data. As a result, while using data-driven models, one should
maintain a good judgment of the validity and limitations of the model in terms of its original formulation.

While physics-driven models have a more explicit and obvious representation of the governing physics,
data-driven models—if trained using an appropriate data set—might encode the physics through a more
implicit and hidden representation. For example, if a data-driven model is trained using experimental data
for which the training input and output have some fundamental physical relationship among them, then it is
possible that the data-driven model could learn to predict the output accurately5, even though it has no
explicit knowledge of the governing constitutive relationships. Because data-driven models do not include an
obvious representation of the physics, the lack of interpretability of their predictions is perhaps the biggest
source of criticism of data-driven approaches, and they tend to be regarded as ‘black-box’ models. A recent
article by Holm entitled, ‘In defense of the black box’ [108], presents a rational explanation for the use of
such models in specific applications. For example, the black box method can be used where the cost of a
wrong answer is low relative to the value of a correct answer, where a machine can perform a monotonous
task, or where the black box can actually produce similar or even better results than experiential judgment.

Both data-driven and physics-based models will play key roles in realizing the ICME approach for design
of MAM. Despite the criticism of data-driven models as black boxes, the use of data-driven approaches will
likely play a key role in linking process to structure to property for MAM, given the high dimensionality of
the MAM design space, the inherent uncertainty associated with MAM, and the computational expense of
integrating p-s-p linkages using purely physics-based approaches. The rapid-prediction capabilities of
data-driven models make them especially attractive for high-throughput predictions, AM-parameter
optimization, and real-time AM-process monitoring [77, 109]. As Francois et al [5] point out in their article
highlighting challenges and opportunities for modeling p-s-p-performance in AM, ‘To be useful, the
predictions must be able to be run in a reasonable amount of time while retaining sufficient physics fidelity
so as to yield trustworthy results’. Similarly, the development and use of physics-based models will continue
to play a key role in MAM by providing improved scientific understanding of the fundamental relationships

5Data-driven models are inherently unable to account for bias that might exist in the training data set.

19



J. Phys. Mater. 4 (2021) 032002 N Kouraytem et al

between AM processes, structures, and properties and by providing ‘ground-truth’ predictions to assess the
predictions made by data-driven models.

4.1. Potential for future work
Both physics-driven and data-driven modeling approaches result in the generation of big/rich data. With the
wealth of data in the scientific community comes a growing challenge of data storage, management, and
sharing, especially for data relevant to AM. Materials informatics, which accelerate materials, products, and
manufacturing innovations, is the way forward in facilitating materials innovation, as detailed in the
discussion by Ramakrishna et al [110]. With the availability of the large datasets, a number of databases
(such as Citrination [111], the AMMaterials Database developed by NIST [112], and the Materials
Commons repository by PRISMS [113]) are available to the scientific community to store and share scientific
materials data. This list is not exhaustive but is intended to offer examples of how the community is handling
data storage and curation. More efforts are needed in unifying and sharing data via established materials
databases.

A new paradigm of theory-guided data science was introduced by Karpatne et al [114], in which
physics-driven knowledge and data science are integrated to leverage the potential of data science in the
advancement of materials discovery. The strength of ICME is the ability to incorporate physics-based
modeling data into data-driven models [67, 115–119]. In the specific application of predicting p-s-p
relationships for MAM design, output from physics-driven model predictions for MAM digital twins can be
used as training data for a data-driven model; in which case, the latter could be trained to predict the relevant
output, despite not having explicit access to the governing equations. In turn, the forward predictions from
trained data-driven models could be used to inform subsequent iterations of physics-driven models. In this
way, data-driven and physics-driven models are not mutually exclusive but can be used to inform each other.

Combining both approaches will allow the physics-driven approaches to support the interpretability of
results from the data-driven techniques, revealing the contents of the black box or even making it slightly less
opaque. Outputs from the physics-driven models used as inputs to the data-driven models may provide
larger sets of input data for training based on governing physics. In turn, the interpretability of the
data-driven modeling results may support in formulating more sophisticated governing equations to be used
in the physics-driven models in support of the digital twin of MAM parts. The understanding of the p-s-p
relationships in the digital twins of MAM parts is ultimately indispensable to the exploration of the MAM
design space, which is not feasible solely through experimentation. The exploration of the process design
space of MAM will enable the process optimization and the production of parts with specific material
properties for a given application to enable qualification and certification of MAM parts.
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