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Abstract Porosity, a commonly occurring void defect
in casting and additive manufacturing, is known to
affect the mechanical response of metals, making it
difficult or impossible to predict response variability.
We introduce a new method of uniquely character-
izing pore networks using a void descriptor function
(VDF), which can be used to predict ductile-metal fail-
ure properties, namely, toughness modulus, ultimate
strength, elongation, and fracture location. The VDF
quantifies the inter-relationships of pores by account-
ing for pore location, size, and distance to free surface.
Using a finite-element-modeling framework, 120 ten-
sile specimens with statistically similar pore networks
were simulated (virtually tested) to failure. The pore
networks were characterized by the proposed VDF,
which was then compared to the nominal location of
fracture (defined as the fracture-initiation location cor-
responding to the dominant crack responsible for final
rupture). The location of maximum VDF accurately
predicted the fracture location (within± 0.2mm) for 91
(76%) of the 120 samples and proved to be a more reli-
able indicator than the location of maximum reduced
cross-section area and the location of largest pore diam-
eter for predicting fracture location. Furthermore, the
maximumVDF value was found to bemore highly cor-
related than fraction porosity, pore size, reduced-cross
section area, and total number of pores to the ultimate
tensile strength, elongation, and toughness modulus.
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1 Introduction

Internal pores, also referred to as voids or defects,
exist in most engineering materials (Huang and Gong
2018; Hogan et al. 2016; Sholl and Lively 2015; Chen
et al. 2013; Varna et al. 1995). Metals are particularly
prone to developing a significant number of pores, often
referred to as pore networks or structures. Depending
on the manufacturing process, pore sizes can range
from undetectable to mms in diameter (Gunasegaram
et al. 2009). In many cases, the mechanical perfor-
mance of metal components containing pore networks
differs significantly from their purely dense counter-
parts (Li et al. 2019; Voisin et al. 2018). In 1977, Gur-
son (1977) developed plastic-yield criterion for duc-
tile porous materials. Since then, many other studies
have expanded upon the Gurson model and have pro-
vided additional insight into the impact pores have
on mechanical properties of metals (Cao et al. 2015;
Fritzen et al. 2012; Khdir et al. 2015; Tvergaard 1981).
However, each of these models, including the Gur-
son model, predicts mechanical properties assuming
the pore network is homogeneous. While these models
are widely used, they are unable to predict mechani-
cal properties influenced by localized stress and strain
from inhomogeneous pore networks. The need to pre-
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dict mechanical properties using localized metrics that
apply to both homogeneous and inhomogeneous pore
networks becomes imperative given that components
with pore networks (e.g., additivelymanufactured com-
ponents) are being employed in critical applications.

One of the leading factors in the failure and frac-
ture of porous ductile materials is the growth and coa-
lescence of pores (Eichhubl and Aydin 2003; Kaba-
tova et al. 2009; Tvergaard 1989). In a recent study
by Kramer et al. (2019), in which tensile samples were
imaged using micro-computed tomography (micro-
CT) andmechanically loaded to failure, it was observed
that voids encouraged and influenced both crack ini-
tiation and crack growth. However, the authors in
that work were unable to find a definitive connection
between the pores and global mechanical behavior. It
was discussed that the ambiguous connection could be
due to pores not being the primary driver of mechanical
behavior and that other factors, such as surface rough-
ness or geometry, likely played a role.

While many factors (e.g., surface roughness, ther-
mal history, residual stresses) contribute to the dif-
ficulty in predicting the failure properties of porous
materials, one possible explanation could lie in the
lack of physical descriptors that adequately charac-
terize pore networks. Over the years, porous materi-
als have often been characterized solely by measur-
ing the percentage of void volume relative to nominal
volume, also known as void volume fraction or frac-
tion porosity (Antou et al. 2004). In recent years, the
advancement of imaging tools, such as micro-CT, has
made it possible to map non-destructively the shape,
size, and location of individual pores comprising a
three-dimensional pore network. The availability of
three-dimensional information has enabled new ways
to characterize pore networks other than the tradi-
tional fraction porosity method. For example, Madi-
son et al. (2018) performed an experimental study
in which the pore networks of additively manufac-
tured specimens were characterized by the following
descriptors: total number of defects, average nearest-
neighbor distance, average equivalent spherical diam-
eter, maximum reduction of cross-sectional area, total
pore volume, and maximum pore size. They correlated
the pore network descriptors to elastic modulus, yield
strength, ultimate strength, and elongation. When cor-
relating yield strength to the pore network descriptors,
they discovered that the total number of defects had a
higher correlation value than total pore volume, which

is analogous to fraction porosity. From that study, it
was demonstrated that other types of physical descrip-
tors, especially the number of defects, can play a more
significant role in relating to the mechanical response
than fraction porosity.

Works like those by Madison et al. (2018) and
Kramer et al. (2019) show that pores can play a crit-
ical role in influencing the mechanical response of
structural materials. However, it is still unknown to
what extent pore networks impact mechanical proper-
ties (namely, fracture-related properties) and whether
the current physical descriptors, like reduced cross-
section area or maximum pore size, characterize pore
networks adequately enough to predict the fullmechan-
ical response up to failure. In light of this knowledge
gap, the objective of this work is two-fold: (1) to isolate
the effect of pore networks on mechanical response to
failure through virtual tension experiments performed
using finite-element modeling, and (2) to establish a
new metric to better characterize pore networks than
existing metrics reported in the literature. For the latter
objective, we present a void descriptor function (VDF)
that accounts for pore connectivity, spacing, size, and
position relative to free surface. Compared to com-
monly reported pore descriptors in the literature, the
VDF is shown to correlate more strongly with tough-
ness modulus, ultimate tensile strength, elongation,
and location of final fracture (defined as the fracture-
initiation location corresponding to the dominant crack
responsible for final rupture).

2 Methods

In this study, 1201 models (virtual tensile specimens)
were created in Abaqus 6.14 (Smith 2014) with pore
networks statistically similar to those in additively
manufactured specimens. The tensile specimens were
virtually loaded to failure using an element-deletion
method, after which the stress–strain response and
mechanical properties were extracted. The mechani-
cal properties of the specimens were then correlated to
pore network descriptors, including metrics commonly
reported in the literature and the proposed VDF.

An overview of the entire computational framework
is shown in Fig. 1. First, a pore network is defined

1 The value of 120was selected based on a formula from (Bellera
and Hanley 2007), which is detailed further in Sect. 2.4.
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Fig. 1 High-level overview of study

by sampling from distributions of experimentally mea-
sured pore statistics. Second, a finite-element model is
instantiated with the statistically generated pore net-
work. Third, the pore network features are character-
ized using metrics found in literature, as well our new
VDFdescriptor. Fourth, the finite-elementmodel is vir-
tually tested to failure by tensile loading. Lastly, corre-
lation analyses are performed to compare the relative
correlations between the different pore descriptors and
various mechanical properties. As a demonstration of
the applicability of the VDF, linear regression models
are trained and tested to predict failure properties as a
function of the VDF metric.

2.1 Pore network definition and sampling strategy

In reality, pore networks found in engineering materi-
als are complex and challenging to model explicitly. A
pore network can be open, meaning that the majority of
the pores are interconnected, and the structure is there-
fore permeable; alternatively, a pore network can be
closed, meaning the pores are isolated and independent
of one another. In either case, pores come in a variety of
shapes, sizes, locations, and inter-connectivity. To sim-

plify the modeling of these complex pore networks, we
elected to model a closed-pore network, idealizing the
pores as spheres.

Rather than randomly generating pores within each
sample, we seek to generate pore networks that are sta-
tistically similar to pore networks resulting from com-
mon manufacturing processes. For this, we obtained
experimental-characterization data from Sandia Natio-
nal Laboratories, in which pore networks of additively
manufactured specimens were determined by micro-
CT scans (Boyce et al. 2017). Using the micro-CT
data, probability distribution functions were fit to the
number of pores found in each specimen (Fig. 2a) and
to the pore diameters (Fig. 2c). Out of eight types of
distributions considered, the gamma distribution func-
tion (Hogg et al. 2012) was found to provide the best
fit for both pore count and pore diameter. The shape
and scale factors used for pore-count distribution were
1.67 and 70.9, respectively, and for pore-diameter dis-
tribution, the shape and scale factors were 1.00 and
0.0195, respectively. Note that the smallest pore diam-
eter considered for explicitly modeling a pore network
was 0.03 mm. This threshold was used to exponen-
tially reduce the number of elements needed to rep-
resent a pore network in a finite-element model while
still retaining the majority of pores that are resolvable
by most lab-scale micro-CT systems. For each model
generated, we first sampled from the distribution rep-
resenting the pore count to determine how many times
we would need to sample from the distribution repre-
senting the pore size. Figure 2b, d show sampledmodel
data from the fitted gamma distribution. The centroidal
coordinates of the pores were sampled uniformly from
the respective ranges of x [−2.0, 2.0], y [−0.5, 0.5], z
[−0.5, 0.5], corresponding to the limits (in mm) of the
length, width, and depth, respectively, of the specimen
gauge region. Pores that overlapped with others were
re-sampled using the Monte Carlo method (Su et al.
2010). This was done to ensure a closed-pore network
in which each pore was independent of the other pores
and spherical in shape. Figure 2e, f provide a qualitative
visual comparison between experimental and synthetic
pore structures.

2.2 Pore network characterization

As described in Sect. 2.1, pore networks are a challenge
to characterize due to their high dimensionality. A sin-
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Fig. 2 Pore-sampling technique based on a subset of additively
manufactured specimens from Ref. (Boyce et al. 2017): a prob-
ability density based on number of pores found in each sample,
with fitted gamma distribution; b sampled data from gamma dis-
tribution fitted to pore count; c probability density based on pore
diameters found in experimental specimens, with fitted gamma
distribution; d sampled data from gamma distribution fitted to
pore diameters; e example of experimentally characterized 3D
pore network; f example of modeled 3D pore network

gle pore network can contain hundreds to thousands
of pores, where each pore has a unique shape, size,
position, and orientation. Fraction porosity has pro-
vided an intuitive and easy-to-measure metric to over-
come this challenge (Slotwinski et al. 2014). However,
fraction porosity is a global characteristic of the pore
network and does not provide information regarding
the arrangement of pores. For example, two samples
with the same fraction porosity could have different
arrangements of pores, resulting in different mechan-
ical responses, as shown by Orsini and Zikry (2001).
Thus, to adequately characterize a pore network, pore

arrangement should also be used in the characterization
technique.

2.2.1 Derivation of void descriptor function (VDF)

In the following, we present a method to characterize a
pore network by incorporating volume and the spatial
distribution of pores into a single function. The deriva-
tion of the function is inspired by a Laplace radial dis-
tribution function used in the work by von Lilienfeld
et al. (2015), which derived a Fourier descriptor func-
tion to represent atomic external potential as a function
of atomic distances. In general, radial distribution func-
tions are used in molecular dynamics to describe the
density of atoms as a function of distance from a ref-
erence point (Lyubartsev and Laaksonen 1995; Levine
et al. 2011). Similarly, our proposed function describes
the density of void volume as a function of position.

First, assuming spherical pores, we begin by defin-
ing the variables that parameterize a pore:

Pi = [vi , di , xi , yi , zi ], (1)

where Pi refers to a single pore that has the attributes of
pore volume (vi ), diameter (di ), and centroid location
(xi , yi , zi ). The pore network is defined by:

P =

⎡
⎢⎢⎢⎣

v1 d1 x1 y1 z1
v2 d2 x2 y2 z2
...

...
...

...
...

vn dn xn yn zn

⎤
⎥⎥⎥⎦ , (2)

where P is an array of pore attributes of length n, and n
is the total number of pores in the specimen (or volume
of interest).

The governing form of the VDF is rooted in the
definition of fraction porosity,where porosity is defined
by the summation of pore volume normalized by the
ideal reference volume, Vre f :

Porosi ty =
n∑
i

vi

Vre f
. (3)

Using Eq. 3 as our foundation, we express porosity
as a function of xre f , a reference position along the axial
direction of the tensile specimen, to signal positions
that are highly populated by pores. In the literature, it
is shown that pore clustering and pores close to the free
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surface have a significant influence on the mechanical
behavior of porous materials (Fan et al. 2003; Chawla
and Deng 2005). With this in mind, we modify Eq. 3 to
incorporate weighting functions of axial position (clus-
tering) and distance to the free surface:

V DF(xre f ) =
n∑
i

viwc(xi , xre f )w f s(di , yi , zi )

Vre f
, (4)

where wc is a weighting function that expresses the
impact that pore i at axial coordinate xi has on the
point of reference, and w f s is a weighting function
that expresses the impact that pore i located a given
distance to the free surface has on the reference point.

The requirements for these weighting functions are
that they return values between 0 and 1, are symmetric
about a reference point, and exponentially decay mov-
ing away from the reference point. While many func-
tions exist that meet these requirements, a Laplacian
distribution function is chosen due to both its adaptabil-
ity and simplicity. The general form of the Laplacian
is defined as,

Laplacian = f (x) = 1

2β
e− |x−μ|

β , (5)

where μ is the location parameter, or in this case, the
point of reference, and β is the scaling parameter.

Using the main function form of the Laplacian, we
define our clustering weighting function for a given
pore as follows:

wc(x, xre f ) = 1

α
e− |x−xre f |

αL , (6)

where α is the scaling parameter for the exponential
decay and L is the length of the gauge region to nor-
malize the distance. The parameterα controls the shape
of the weighting function used to express the relative
influence of a given pore based on its axial position
with respect to the point of reference. A small value
of α indicates a rapid decay; while a large value of
α indicates a more gradual decay. This implies that a
small value of α weights less significantly pores that
are farther away (axially) from the point of reference
compared to a large value of α. Similarly, we define
the weighting function of pore position relative to a
free surface as follows,

w f s(d, y, z) = 1

ρ
e− |c− d

2 −
√

y2+z2 |
ρc , (7)

where d is the pore diameter, y and z are pore coor-
dinates that describe its radial distance from the cen-
ter (neutral axis) of the gauge region, c is the maxi-
mum radial distance from the center (neutral axis) of
the gauge region to the free surface, and ρ is the scaling
parameter. Similar to Eq. 6, the weighting parameter ρ

controls the rate of decay used to express the relative
influence of a given pore based on its radial position
(in the y-z plane) with respect to the free surface of the
specimen.

The final form of the VDF becomes:

V DF(xre f ,P) =
n∑

i=1

vi e
− si

αL − |c−ri |
ρc

Vgauge
, (8)

where

si = |xi − xre f | (9)

and

ri =
√
y2i + z2i + di

2
. (10)

Note in Eq. 8 that the coefficients that appear in Eqs. 6
and 7 (1/α and 1/ρ, respectively) have been omitted
from the VDF function. This is done to simplify the
expression, as the VDF is not required to be a proba-
bility distribution function.

The purpose of theVDF is to identify positions along
the gauge section that are highly populated by crit-
ical pore structures, thus signaling where fracture is
likely to occur when mechanically loaded. To illustrate
the definitions and implementation of the VDF, Fig. 3
shows a sample pore network. Figure 3c shows the vari-
ables defining the pore network, and Fig. 3b shows five
points of reference at which the VDF is evaluated. Fig-
ure 3d shows a plot of theVDF along the axial direction
of the gauge region. As shown in Fig. 3d, the maxi-
mum value of the VDF occurs at reference point x4,
which is hypothesized to be the approximate location
of fracture. This hypothesis is explored further using
computational fracture simulations, described in Sect.
3.2.

The scaling parameters in Eq. 8 can take on any
positive, non-zero value. However, to optimize the pre-
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Fig. 3 Illustration of void descriptor function: a high-level
depiction of a pore network inside a tensile specimen, b sequence
of images showing a magnified view of the pore network with
different points of reference along the x-direction, c detailed axial

and cross-sectional views of the gauge section showing variables
s and r used in VDF equation, and d plot of VDF values for the
reference points along the x-direction

dictive capability of the VDF, the scaling parameters
can be calibrated. To assess the sensitivity of the VDF-
based predictions with respect to α and ρ, a study was
performed on the 120 simulations (detailed in Sect. 3)
in which the data set was randomly divided into three
groups of 40 samples. For one group of 40 samples,

the scaling parameters were optimized such that max-
imum correlation was achieved between the location
of the VDF global maximum and the actual location
of fracture among the 40 samples. The optimization
was performed using a Bayesian optimization tech-
nique (Shahriari et al. 2016). Then, using the scaling
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Table 1 List of pore network characterization descriptors with their corresponding name, variable, units, and description

Characterization descriptor Variable Units Description

Fraction porosity V f ract % The percent of pore volume to nominal volume

Number of pores Ntot count The total number of pores in gauge region of sample

Average cross-section area reduction CSAavg % The average percent of area missing from nominal
cross-section area

Max. cross-section area reduction CSAmax % The maximum percent of area missing from
nominal cross-section area

Max. cross-section area reduction location xCSA,max mm Axial location of the max cross-section area reduction

Average nearest neighbor distance NNDavg mm The average distance to nearest neighboring pore

Average equivalent spherical diameter ESDavg mm The average diameter of all pores in the sample

Max. equivalent spherical diameter ESDmax mm The maximum diameter of all pores in sample

Max. equivalent spherical diameter location xESD,max mm Axial location of the maximum pore diameter

Max. VDF value V DFmax no units The global maximum value of the VDF

Max. VDF value location xV DF,max mm Axial location of the VDF global maximum value

parameters optimized for the 40 samples, the VDF was
evaluated for the remaining 80 samples and used to
blindly predict the fracture locations. The process was
repeated for the second and third sets of 40 samples,
each time predicting fracture location for the remain-
ing 80 samples. The results are presented in Table 5
of the Appendix. It is shown that a range of values for
α and ρ results in a similar number of accurate pre-
dictions of fracture location in the blind assessments,
suggesting that the predictive capability of the VDF
depends primarily upon its functional form rather than
on the specific values chosen for α and ρ. Thus, for
the remainder of the manuscript, we chose to optimize
the scaling parameters using the entire data set of 120
samples. The optimized values for α and ρ were found
to be 0.220 and 0.188, respectively, which are used
in all reported evaluations of the VDF throughout the
remainder of the manuscript.

2.2.2 Pore-network characterization variables

Along with developing a new pore network descrip-
tor, we aim to compare the relative performance of the
VDF to pore-related metrics commonly reported in the
literature in terms of ability to predict ductile-metal
failure properties. The pore-related metrics considered
include the following: fraction porosity, maximum per-
cent reduction of cross-sectional area, average per-
cent reduction of cross-sectional area, total pore count,
average distance to nearest neighboring pore, aver-
age equivalent pore diameter, andmaximum equivalent

pore diameter. Maximum percent reduction of cross-
sectional area and maximum equivalent pore diameter
also have associated locations, which will be used to
correlate with the dominant fracture location. A list of
all the pore-related metrics with their definitions is pro-
vided in Table 1.

2.3 Finite-element models

Abaqus 6.14 was used to simulate tensile loading
to failure of all 120 porous specimens. An isotropic
elastic-plastic constitutive model with von Mises plas-
ticity and material hardening was used. Due to the
nonlinearity of the stress–strain response, the simula-
tion was divided into three phases: elastic, plastic, and
progressive damage, or material softening. The elas-
tic response is defined by the material’s elastic modu-
lus and Poisson’s ratio. The plastic response is defined
by plastic yield stress versus strain. The progressive
damage is defined by fracture strain, stress triaxiality,
strain rate, and fracture energy. The calibration proce-
dure and final properties for each phase are detailed in
subsequent sections.

2.3.1 Geometry

The tensile sample geometry in this study is the same
nominal geometry used by Boyce et al. (2017), which
is based on the ASTM E8 standard (Standard ASTM,
E8, E8M-13a 2013). Figure 4 shows the dimensions of
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Fig. 4 Dimensions of specimen geometry. All units in mm

the sample. The gauge region is 4 mm long with a 1×1
mm2 cross-section area.

2.3.2 Material properties

Thematerial properties were calibrated from additively
manufactured (AM) 17-4 PH stainless steel experimen-
tal data (Boyce et al. 2017). The data set consists of 109
AM samples with low porosity pore networks that are
qualitatively and quantitatively similar to the pore net-
works generated in our study. From the 109 samples,
the average unloading elastic modulus was found to be
182MPa; however, we opted to use the industrial-based
elastic modulus of 196.6MPa to avoid double counting
the effects of pores from the experimental data. To cal-
ibrate the plastic and fracture properties, we used four
samples that were considered to nominally represent
the stress–strain behavior of the entire data set. The pre-
cise pore networks for the four samples were modeled
in Abaqus 6.14, and the hardening and damage prop-
erties were iteratively modified to fit the finite-element
stress–strain response to the experimental stress–strain
response. To assist in the calibration of the hardening
properties, we used Abaqus’ inbuilt calibration tool to
convert engineering stress–strain to true stress–strain.
This relationship only holds true up to necking or soft-
ening of the material. Subsequently, the true stress–
strain data and fracture properties were fine-tuned until
the finite-element model results matched experimental
stress–strain data. The true plastic stress–strain used is
shown inFig. 5.Additionally, a condensed tabular input
is provided in Table 6 in the Appendix. The fracture

Table 2 Material properties used for all 120 finite-elementmod-
els

Material property Units Value

Elastic modulus MPa 196,600

Poisson’s ratio 0.3

Density kg/m3 8000

Fracture strain mm/mm 0.2

Stress triaxility MPa/MPa 0.33

Strain rate strain/sec 0

Fracture energy mJ 0

Fig. 5 Yield stress response as a function of plastic strain.
Abaqus input data to model true stress–strain response

energy was chosen to be 0, which resulted in very little
softening behavior prior to final rupture (i.e., an abrupt
decrease in the stress–strain curve). Thiswas consistent
with the stress–strain behavior observed in the experi-
mental data provided by Sandia National Laboratories
(Boyce et al. 2017). The strain rate was set to 0, making
the simulation independent of strain rate effects. The
fracture strain was found to be 0.2 based on matching
the simulation elongations to the experimental elonga-
tions for the four calibration specimens. A summary of
the material properties is shown in Table 2 and Fig. 5.

2.3.3 Boundary conditions

The boundary conditions were modeled to emulate
the experimental testing conditions. Displacement con-
straints were applied to the leading faces of the grips,
which are highlighted in red in Fig. 6a. The left grip
faces shown in Fig. 6a were fixed in the x, y, and z
directions, and the right grip faces were fixed in the
y and z directions, with 1 mm smooth displacement
step applied in the x-direction. A smooth displacement
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Fig. 6 Boundary conditions of finite-elementmodel: a boundary
conditions applied at the leading faces of the grips; b meshed,
undeformed specimen; and c fractured specimen at end of 1 mm
applied displacement

step slowly ramps up and down the displacement rate
at the beginning and end of the simulation to miti-
gate dynamic-inertia effects. To ensure a quasi-static
response, an average displacement of 1.54 mm/s was
used. The displacement of 1 mm was determined to be
sufficient to induce complete rupture of all specimens.
Figure 6b shows a sample state and mesh before load-
ing. Figure 6c depicts complete fracture in the fully
deformed state at the end of 1 mm displacement.

2.3.4 Element deletion

An element-deletion approach was chosen to rep-
resent fracture because of its computational effi-
ciency, ability to initiate fracturewithout defining crack
initiation locations a priori, and the authors’ prior
experience applying the method in the Third San-
dia Fracture Challenge (Kramer et al. 2019; Spear
et al. 2019). In the element-deletion method, an ele-
ment is deleted (element stiffness is reduced to 0)
when it reaches user-specified criteria of either strain
or energy. Consequently, fracture can occur any-

where in the model that reaches the specified cri-
teria. This is a favorable method to test the varia-
tions of fracture location and mechanical properties
influenced by a specimen’s unique arrangement of
pores.

The primary disadvantage of using element deletion
is mesh sensitivity. For an element to be deleted from a
simulation, the progressive damage variable governed
by plastic strain needs to reach 1.0. The rate of progres-
sive damage is slower in larger elements compared to
smaller elements. Due to the dependence of progres-
sive damage on element size, simulations could exhibit
mesh-related artifacts and inconsistencies among simu-
lations. To mitigate this problem, an effort was made to
ensure that the element sizes were uniform throughout
the gauge region and consistent among all 120 mod-
els. Thus, we chose an element size that could ade-
quately conform to the smallest pore size found among
the simulations, while also ensuring that the mechan-
ical properties (ultimate tensile strength, elongation,
toughness modulus, and fracture location) were con-
verged with respect to mesh size. A mesh convergence
error less than 1% was achieved for ultimate tensile
strength and fracture location, while elongation and
toughness modulus had a convergence error of 4%,
which was deemed to be acceptable. The final element
size used within the gauge region for all models was
0.05 mm.

The numerical simulations were performed using
the Abaqus 6.14 explicit solver. A mass scaling fac-
tor of 1,000,000 was used to decrease simulation time.
This factor was applied consistently across all simula-
tions, and no impact on the mechanical response was
observed when comparing the mechanical response
to simulations without mass scaling. The simulation
time was approximately 790 CPU hours for each sam-
ple using 32 parallel processors through the Univer-
sity of Utah’s Center for High Performance Com-
puting (CHPC). Approximately 95,000 CPU hours
were required to simulate failure of all 120 mod-
els.

2.3.5 Post-simulation processing

Stress–strain curves were generated by extracting force
and displacement data from each simulation. In each
finite-element model, two partitions were embedded
in the ends of the gauge region and defined as ele-
ment sets, namely, “Fixed” and “Displaced.” From
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Table 3 List of mechanical properties with their corresponding name, variable, units, and description

Mechanical property Variable Units Description

Elastic modulus E GPa Slope of elastic region in stress–strain curve

Yield strength σy MPa Stress value at which plastic yielding begins, offset by 0.2% strain

Ultimate tensile strength σu MPa Maximum stress value in stress–strain curve

Percent elongation e f % Value of strain at fracture multiplied by 100

Toughness modulus UF MPa Total energy dissipated during tensile loading (area under stress–strain curve)

Fracture location x f ract mm Axial location in gauge region where dominant crack initiates

Fig. 7 Stress–strain data for all 120 finite-element simulations.
Experimental bounds from Ref. (Boyce et al. 2017) are included
for reference

the “Fixed” element set, the reaction forces were
summed across the elements and divided by the nom-
inal cross-section area of 1.0 mm2 to calculate the
engineering stress. Engineering strain was calculated
as the change in length of the gauge section divided
by the original gauge length of 4.0 mm. From the
engineering stress–strain plot, the mechanical prop-
erties of elastic modulus, yield strength, ultimate
tensile strength, toughness modulus, and elongation
were determined. Additionally, the location of fracture
(defined as the fracture-initiation location correspond-
ing to the dominant crack responsible for final rup-
ture) was recorded. Table 3 provides a summary of all
mechanical properties and attributes recorded for each
simulation.

2.4 Correlation analysis and regression model

To assess the relative performance of the VDF com-
pared to commonly reported pore-related metrics in
terms of characterizing pore structures and their rela-

tionships with mechanical behavior, correlation and
regression analyses were carried out. First, to ensure
that the correlation results would be statistically sig-
nificant, a sample size was determined using a formula
derived by Bellera and Hanley (2007). The formula
estimates the minimum sample size needed to satisfy
requirements for a specific confidence interval andmar-
gin of error given that the data are either uniformly or
normally distributed. Thus, for a 90% confidence inter-
val and a 10%margin of error, it was estimated that 120
pore instantiations would be required to achieve statis-
tically significant correlation results. After collecting
data for all 120 simulations, two sets of Pearson corre-
lation coefficients were calculated: (1) between simu-
lated mechanical properties and non-location-specific
pore metrics, including the maximum VDF value, and
(2) between simulated fracture location and location-
specific poremetrics, including the location of themax-
imum VDF value.

Additionally, to demonstrate the predictive capa-
bilities of the VDF metric, regression analyses were
performed between either the maximum VDF value
or its location and the resulting mechanical proper-
ties or location of fracture, respectively. The results
are compared to regression analyses performed using
other commonly reported pore-related metrics. Note,
the objective of this work is not to develop a predic-
tive model; rather, we aim to demonstrate the appli-
cability of the VDF metric and relative performance
through direct comparison with other metrics. For that
reason, and for illustration purposes only, we assume
a linear regression model. Each model was trained
using 80% of the simulation data (96 samples) and
tested using the remaining 20% of the simulation data
(24 samples). The analysis was similar to regression
studies performed on the mechanical properties of
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Table 4 List of the
minimum, maximum, and
average mechanical
property values from
finite-element simulation
and experimental data

a Yield strength calculated
using 0.2% offset
b Yield strength calculated
using 0.5% offset

Mechanical Simulation data Experimental data (Boyce et al. 2017)

Property Min Max Mean Min Max Mean

E [GPa] 193 198 197 164 206 182

σy [MPa] 866a 900a 897a 770b 1142b 924b

σu [MPa] 1013 1128 1090 1005 1212 1085

e f [%] 2.73 12.0 7.46 3.47 14.0 8.18

UF [MPa] 23.7 125 74.4 na

x f ract [mm] −1.88 1.74 −0.05 na

cement (Jahed Armaghani et al. 2015; Khademi et al.
2016).

3 Results and discussion

3.1 Finite-element-based fracture simulations

Figure 7 presents the stress–strain curves from which
the mechanical properties were extracted for all 120
finite-element simulations. The minimum, maximum,
and average mechanical properties among all simula-
tions are reported inTable 4, alongwith the correspond-
ing mechanical properties from the experimental data
(Boyce et al. 2017) 2. Based on the data presented in
Table 4, it is apparent that the simulation data under-
predicts the range of values for elastic modulus and
yield strength compared to the experimental data.How-
ever, the range of values for ultimate strength and per-
cent elongation from the numerical simulations closely
represent those from the experimental data. The small
range of values for elastic modulus and yield strength
from the simulations is explained by the fact that the
only source of variability within the models is the pore
structure (not constitutive properties), which does not
manifest in significant variability in the stress–strain
response until onset of fracture.

Figure 8 shows the final fractured specimens for nine
representative fracture scenarios of the 120 test cases.
Along with each image of a fractured model is a plot
of the VDF, evaluated along the gauge region for the
corresponding sample. For comparison, the plot also

2 The stress data reported in Ref. (Boyce et al. 2017) were based
on width and thickness measurements for individual tensile sam-
ples using aKeyence IM-6225T opticalmeasurement system and
Mitutoyo Digimatic Micrometer, respectively.

includes the percent reduction of cross-sectional area
evaluated along the gauge length. A vertical line in each
plot indicates the nominal location of fracture within
each specimen. One of the benefits of the VDF metric
versus the percent cross-section area reduction metric
is that the former is far less noisy than the latter, as evi-
dent in the plots of Fig. 8. This is due to the continuous
nature of the VDF; whereas, the percent cross-section
area reduction is much more sensitive to highly local-
ized changes in pore structure. Consequently, the VDF
provides a stronger signal with less noise and, in most
cases, an obvious global maximum. The second point
of interest is that the location of the VDF global max-
imum coincides with the nominal location of fracture
for amajority of the samples (91 out of 120). Represen-
tative examples are shown in Fig. 8a–f. Additionally, in
the majority of cases for which the VDF global max-
imum does not coincide with the fracture location, a
local maximum3 does coincide with the fracture loca-
tion, exemplified in Fig. 8g, h. This discovery is signifi-
cant in that it suggests that, in many cases, the location
of fracture can be predicted a priori based solely on
the pore network, which is discussed in greater detail
below. It is worth noting that there are some cases (6 out
of 120, based on a 5% error tolerance) for which there
does not appear to be an obvious relationship between
theVDFvalue and the location of fracture, as illustrated
in Fig. 8i. However, such cases are rare and merit fur-
ther investigation.

3 The built-in function scipy.signal.find_peaks in SciPy v1.4.1
was used to identify all local maxima.
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Fig. 8 A comparison between VDF, percent cross-section area
reduction, and fracture location in nine representative samples:
a–f samples for which the fracture location aligned with the
global maximum of the VDF; g–h samples for which the frac-
ture location aligned with a local maximum of the VDF; and i

a sample in which the fracture location did not align with either
global or local maxima of the VDF. Translucent views of the von
Mises stress fields are overlaid to highlight the locations of final
fracture (these are taken after rupture for visual purposes only,
so stress legends are intentionally excluded)

3.2 Ability of the void descriptor function to predict
fracture location

The ability of the VDF to predict fracture location
is explored further here. The location of the VDF
global maximum for each pore instantiation is com-

pared directly to the nominal fracture location for each
of the 120 samples, and a prediction error is calculated
by taking the absolute distance between the fracture
location and the global maximum VDF value location
and dividing by the length of the gauge region. The fre-
quency of accurately predicting fracture location based
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Fig. 9 Percentage of samples for which the location of VDF
maxima accurately predict fracture location within a given error
tolerance

on the VDF is plotted as a function of error tolerance
in Fig. 9. The plot includes three curves: (1) cases for
which the location of global maximum accurately pre-
dicts fracture location, (2) cases for which the location
of a local (not global) maximum accurately predicts
fracture location, and (3) cases for which the location
of any maximum accurately predicts fracture location,
i.e. the cumulative sum of the first two cases. The first
case is considered to be the most impactful because of
the unique signal of the predicted location. For exam-
ple, Fig. 9 shows that the location of global maximum
of the VDF accurately predicted 91 of the 120 sam-
ples, or 76% frequency, within a 5% error tolerance.
The cumulative-sum curve shows that the fracture loca-
tion will almost always occur at a location ofmaximum
VDF,whether a local or globalmaximum,which is also
useful information. In comparison to the other location
metrics, the VDF predicted 91 samples, whereas the
maximum cross-section reduction location and largest
equivalent pore diameter location only predicted 58 and
59 samples, respectively (given a 5% error tolerance).

The certainty that the location of VDF global maxi-
mum will accurately predict fracture location can be
determined based on the difference between global
and local VDF maxima values. From this study, it is
observed that when the VDF has a global maximum
much greater than any local maxima, the fracture loca-
tionwill almost certainly coincide with the global max-
imum location. To quantify this observation, we intro-

duce an ambiguity score calculated as follows:

AmbiguityScore = 1 − |V DFmax1 − V DFmax2 |
V DFmax1

,

(11)

whereV DFmax1 is the globalmaximum, andV DFmax2
is the next greatest local maximum value. This mea-
sure helps classify the certainty of a VDF’s predictive
capability. For samples inwhich there is only onemaxi-
mum, the ambiguity score is 0.0 and indicates that nom-
inal fracture location will occur at the location of VDF
global maximum. For samples in which the global and
local maxima have similar values, the ambiguity score
increases, and as a result, it is less certain that the frac-
ture location will coincide with the location of global
VDFmaximum. Using this definition of ambiguity, the
certainty of predicting fracture location based on VDF
global maximum can be estimated, as illustrated in Fig.
10a–c. As shown by the curve labeled Total number of
samples in Fig. 10c, there are 28 out of 120 samples
(23%) that have a VDF ambiguity score of 0.0. As the
VDF ambiguity score increases to 1.0, the total number
of samples increases until all 120 are included. Like-
wise, we can plot the number of samples for which
fracture location is accurately predicted within a 5%
error tolerance as a cumulative function of ambiguity
score. This curve is shown in red and is labeled Num-
ber of accurately predicted samples. As the ambiguity
score increases from 0.0 to 1.0, the number of sam-
ples for which fracture location is accurately predicted
increases from 28 to 91. The curve labeled Percent of
accurately predicted samples to total number of sam-
ples represents the prediction certainty and is calcu-
lated by dividing the number of samples with accurate
predictions of fracture location (red curve) by the total
number of samples at or below a given VDF ambiguity
score (blue curve). For example, at an ambiguity score
of 0.7, the total number of samples with a VDF ambi-
guity score less than or equal to 0.7 is 39, of which
38 (97%) have fracture locations that are accurately
predicted based on the location of VDF global max-
imum. This implies that, based on location of global
VDFmaximum, a design engineer could achieve above
a 95% confidence level in predicting failure location
for roughly one-third of the samples. In later sections,
a VDF ambiguity score of 0.7 is referenced to select
samples with high predictive certainty.
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Fig. 10 Defining prediction certainty as a function of ambiguity
score. a Definition of the transition point between a high and
low ambiguity score. b Example of two VDF plots in which the

ambiguity score is calculated. c A cumulative distribution of the
number of samples with ambiguity scores at or below the value
indicated on the horizontal axis

3.3 Correlation between pore-related metrics and
mechanical response

Results from thePearson correlation analyses described
in Sect. 2.4 are presented in Fig. 11. Figure 11a presents
the correlation coefficients between various mechani-
cal properties and eight different pore-related metrics,
including seven commonly reported metrics from the
literature and the proposed metric of maximum VDF.
As illustrated in Fig. 11a, the correlations with elas-
tic modulus are actually stronger for three of the pore
metrics (viz., fraction porosity, number of pores, and
the average cross-section area reduction) than for the
VDFmax metric. However, none of the Pearson cor-
relation coefficients exceeds 0.7 for the elastic modu-
lus, which represents the lowest overall set of corre-
lation coefficients among all of the reported mechan-
ical properties. This relatively low correlation can be
explained by the lack of variability in elastic modulus
among the 120 stress–strain curves shown in Fig. 7 and
reported in Table 4. Similarly, the correlations between

yield strength and fraction porosity, total number of
pores, and the average cross-section area reduction
are stronger than they are between yield strength and
VDFmax . The strong correlation between number of
pores and yield strength is in agreement with the exper-
imental study by Madison et al. (2018), which found
that the yield strength was highly correlated to the total
number of pores in a sample. Furthermore, porosity
has been shown in numerous studies to be highly cor-
related with plastic yielding (Gurson 1977; Tvergaard
1981; Hyun et al. 2001).

Interestingly, for all properties that are beyond yield-
ing (viz., ultimate tensile strength, percent elonga-
tion, and toughness modulus), the VDFmax metric has
the highest correlation among all eight pore-related
metrics considered, suggesting that it could serve as
a better indicator of fracture-related properties than
other pore-relatedmetrics reported in the literature. For
example, the magnitude of the correlation coefficient
betweenVDFmax and ultimate tensile strength is 0.878,
followed by maximum cross-section area reduction,
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Fig. 11 a Pearson correlation coefficients between pore network
descriptors (non-location-specific) and mechanical properties. b
Pearson correlation coefficients associated with fracture location

based on all samples in the data set (top row) and the subset of
samples with an ambiguity score less than or equal to 0.7 (bottom
row)

which has a correlation coefficient magnitude of 0.795.
Unlike metrics like fraction porosity, pore count, and
maximum pore diameter, the VDFmax metric accounts
for pore clustering, which plays an important role in
onset of fracture. Although metrics based on reduction
of cross-sectional area and average nearest-neighbor
distance account for pore clustering, to some extent,
they do not account explicitly for the positions of pores
relative to free surfaces, which is also known to influ-
ence onset of fracture. Pore clustering, size, and posi-
tion relative to the free surface are all accounted for in
the VDF metric.

Figure 11b presents the correlation coefficients
between nominal location of fracture and locations
of maximum pore-related metrics, including maxi-
mum cross-section area reduction, maximum equiva-
lent spherical diameter of a pore, and VDFmax . There
are two rows presented in the correlation matrix of
Fig. 11b. The top row corresponds to a correlation anal-
ysis performed using all 120 samples in the data set. In
that case, the locations of maximum cross-section area
reduction and maximum equivalent spherical diameter
have correlation coefficients with fracture location of
just 0.426 and 0.470, respectively; whereas, the loca-
tion of VDFmax has a correlation coefficient of 0.640.
The second row in the matrix corresponds to a cor-
relation analysis performed on the subset of samples
that have a VDF ambiguity score less than or equal to
0.7 (see Fig. 10). Remarkably, in that case, the correla-

tion between location of VDFmax and fracture location
is 0.969, which is significantly greater than either of
the other location-specific pore metrics and represents
a near-perfect linear relationship. This relationship is
explored further in the next section.

3.4 Regression analysis

To illustrate the predictive capabilities of the VDF-
based metric, this subsection presents and discusses
the results of linear-regression analyses performed
between fracture-related properties and various pore
metrics, including VDFmax , fraction porosity, loca-
tion of VDFmax , location of maximum pore diame-
ter, and location of maximum cross-section area reduc-
tion. Note, use of linear regression is not an assertion
that the best-fit predictive model is linear. Rather, the
purpose of performing linear regression is to illustrate
the potential of the VDF as a variable in a predictive
model and to provide a direct and simple comparison
of its performance with that of other pore-related met-
rics.

Figure 12 presents a comparison between the per-
formance of VDFmax and fraction porosity in terms of
predicting ultimate tensile strength, toughness modu-
lus, and elongation. For each pore metric, results are
presented for both the training data and the testing data
used in the regression analysis. For all three mechan-
ical properties, and considering the performance for
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Fig. 12 Linear regression models showing ultimate tensile strength, toughness modulus, and elongation as functions of maximumVDF
value (a, c, e) and fraction porosity (b, d, f)

both training and testing data, the VDFmax metric
outperforms fraction porosity, as evidenced by both
the R2 and root-mean-squared error (RMSE) met-
rics. The best performing regression model is the
ultimate tensile strength as a function of VDFmax

(Fig. 12a), which results in R2 values of 0.782
and 0.708 for the training and test sets, respec-
tively. While these values are not ideal, they greatly

outperform the regression model of ultimate tensile
strength as a function of fraction porosity, as shown
in Fig. 12b.

Figure 13 shows regression models of fracture loca-
tion as a function of location of maximum VDF, loca-
tion of maximum cross-section area reduction, and
location of maximum pore diameter. Results from the
regression analyses presented in Fig. 13 are divided
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Fig. 13 Linear regression models showing fracture location as
functions of location of maximum VDF value, location of max-
imum cross-section area reduction, and location of maximum

pore diameter. a), (c), and (e use the entire data set. b, d, and
f use a subset of the data corresponding to samples that have a
VDF ambiguity score less than or equal to 0.7

into two cases: one that includes all 120 samples in
the data set, and another that includes only the sub-
set of samples that have VDF ambiguity scores less
than or equal to 0.7 (see Fig. 10). Among the three
pore-related metrics considered, the VDF-based met-
ric outperforms the other pore-related metrics in terms

of predicting nominal location of fracture. Figure 13a
presents the regression model results based on loca-
tion of VDFmax using all 120 data points in the set.
While the R2 values for the training and testing data
in Fig. 13a are significantly greater than those corre-
sponding to the other two pore metrics (Fig. 13c, e),
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they are still not ideal (0.380 and 0.620, respectively).
This is due, in large part, to the fact that the regres-
sion model does not account for cases in which a local,
rather than global, VDF maximum accurately predicts
the location of fracture. Thus, by restricting the data
set to only those samples with an unambiguous max-
imum VDF value (i.e., those with an ambiguity score
of 0.7 or less, presented in Fig. 13b), the R2 values
increase significantly to 0.937 and 0.966 for the train-
ing and test sets, respectively. This result is promising
because it shows that, in many cases, the global maxi-
mum of the VDF function provides a clear and nearly
perfect signal of the fracture location. Future efforts
could consider how to incorporate into the fracture pre-
dictions cases where multiple, similar-valued maxima
exist, whichwould further improve the predictive capa-
bility of the VDF.

3.5 Limitations, implications, and future work

There are several assumptions of the proposed VDF
that merit further discussion. The first assumption is
that all pores are spherical. This assumption was made
for simplicity and was rationalized based on the typ-
ical pore shapes observed in additively manufactured
materials (Rao et al. 2016). However, pore shape has
been shown to influencemechanical behavior of porous
materials (Cao et al. 2015;Khdir et al. 2015;Masmoudi
et al. 2017). Thus, future modifications of the VDF
could include an additional term to incorporate pore
shape.

One of the objectives of this study was to isolate
the effect of pore networks on the mechanical response
under tensile loading; hence, the current VDF neglects
the effects of surface roughness. Surface roughness has
been found to be a crucial variable that influences the
mechanical response of additively manufactured met-
als (e.g., see Ref. Watring et al. 2019), and in many
real-world applications, surface roughness is expected
to be present and to play a role in the mechanical
behavior. Also, additively manufactured metals can
exhibit anisotropic behavior with respect to build ori-
entation. Thus, for future work, it would be impor-
tant to include surface roughness into the VDF for-
mulation and to consider the effects of anisotropy (if
applicable), which would provide opportunities to per-
formVDF analysis directly on experimental data rather
than strictly on idealized numerical data. Doing so

would allow to assess the predictive capabilities of the
VDF through experimental validation and blind pre-
diction.

Another limitation of the VDF, in its current form,
is that it is derived for one-dimensional problems. That
is, the VDF is formulated as a function of x . The one-
dimensional formulation is applicable to problems like
the uniaxial tension tests studied here, where the nomi-
nal location of fracture can be adequately described by
a single value of x . It is noted, however, that the current
implementation of the VDF may inadequately weight
pore-pore interactions in the y-z plane. For example,
two pores with the same x coordinate would collec-
tively have the same contribution to the VDF value
whether those pores are located in close proximity to
each other or on opposite sides of the neutral axis.
The VDF formulation could, therefore, be enhanced
by incorporating effects of pore-pore interactions in
the y-z plane. Additionally, future work could seek
to generalize the VDF to three dimensions to enable
characterization of pore networks in more complex
geometries and to signal fracture in any arbitrary loca-
tion.

The synthetic pore networks modeled in this work
were generated by sampling distributions of pore loca-
tion and pore size. While the resulting pore struc-
tures are statistically representative of experimental
observations, the modeled pore structures were not
generated based on physical processes that govern
the formation of specific pore structures. Thus, future
research could focus on generating pore structures
based on physics-driven modeling of the manufac-
turing process, which could provide a critical link
between process, pore structure, and mechanical prop-
erties.

Despite the limitations described above, the work
presented herein demonstrates that the VDF is a
promising metric to assist with characterizing pore
networks and predicting ductile-metal failure proper-
ties. The VDF improves upon existing pore-related
metrics reported in the literature by accounting for
pore clustering, pore size, and position of pores rel-
ative to free surfaces. In terms of potential applica-
tions, the VDF could be incorporated into a screen-
ing tool to aid in predicting, a priori, likely locations
of fracture as well as post-yield mechanical proper-
ties of porous and ductile metals. For example, micro-
CT images could be analyzed using the VDF (or a
modified version thereof), providing valuable infor-
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mation for part qualification. Another potential appli-
cation of the VDF is as a parameter that could be
incorporated into constitutive models, analogous to
the incorporation of fraction porosity in the Gurson
model to predict plastic yielding. An additional bene-
fit of the VDF is that it is straight-forward to evaluate,
which further enhances its attractiveness in applica-
tion.

4 Conclusion

A void descriptor function (VDF) is derived to charac-
terize pore networks in structural materials. The VDF
improves upon existing pore-related metrics reported
in the literature by simultaneously accounting for pore
clustering, pore sizes, and pore locations relative to
free surface, all of which have been shown to influ-
ence mechanical behavior of porous materials. To iso-
late the effect of pore structure on fracture behavior
and to assess the performance of the VDF relative to
other pore-related metrics, numerical fracture simula-
tions were performed on 120 tensile specimens hav-
ing statistically similar and explicitly modeled pore
instantiations. Prior to simulated loading, the VDF and
other common pore-related metrics were recorded for
each specimen. Following simulated loading to failure,
mechanical properties were recorded for each model,
including elastic modulus, yield strength, ultimate ten-
sile strength, percent elongation, and toughness mod-
ulus. Based on results from the numerical simulations
and subsequent analysis, the following conclusions are
drawn:

1. The VDF global maximum exhibits stronger cor-
relations with post-yielding mechanical proper-
ties (viz., ultimate tensile strength, elongation, and
toughness modulus) than do any of the follow-
ing pore metrics: fraction porosity, total number
of pores, average or maximum reduction of cross-
sectional area, average nearest-neighbor distance
among pores, and average or maximum pore diam-
eter.

2. The predictive capability of the VDF is illus-
trated through linear regression. The VDF regres-
sion models outperform fraction-porosity regres-
sion models in terms of predicting post-yield
mechanical properties.

3. The location of global VDF maximum accurately
predicts the nominal location of fracture (within ±

0.2 mm) with 76% frequency and serves as a better
indicator of fracture location than the location of
the maximum reduced cross-section or the location
of the largest pore.

4. Ambiguity scores are introduced to assess the cer-
tainty, as a function of error tolerance, of predict-
ing fracture location based on location of the global
VDF maximum. Samples with an ambiguity score
of 0.7 or less have locations of VDF maximum
that correlate stronglywith fracture location, as evi-
denced by aPearson correlation coefficient of 0.969
and R2 values between 0.937 and 0.966 from linear
regression.

5. The VDF provides a promising metric for predict-
ing variability ofmechanical properties due to inho-
mogeneous pore structures in elastic-plastic mate-
rials.
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Appendix

See Tables 5 and 6.

Table 5 Sensitivity of predictions to VDF parameters. The 120
samples described in Sect. 2 were randomly divided into three
data sets of 40 samples each. The VDF scaling parameters α and
ρ were optimized for each data set and used to blindly predict
the fracture location for the remaining 80 samples not included
in the optimization

Data set 1 Data set 2 Data set 3

α 0.096 0.247 0.202

ρ 0.594 0.314 0.167

Number of
accurately*
predicted
samples

49/80** 45/80** 50/80**

*xV DF,max was within 0.2 mm (5%) of x f ract (actual fracture)
**The remaining 80 samples not used in Bayesian optimization
technique (Shahriari et al. 2016)
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Table 6 Condensed tabular input of plastic stress–strain curve

Yield stress [MPa] Plastic strain

800 0

893 0.002

934 0.004

959 0.006

977 0.008

992 0.01

1004 0.012

1015 0.014

1025 0.016

1034 0.018

1042 0.02

1050 0.022

1057 0.024

1061 0.025

1077 0.03

1105 0.04

1129 0.05

1152 0.06

1173 0.07

1193 0.08

1213 0.09

1232 0.1

1251 0.11

1269 0.12

1288 0.13

1306 0.14

1324 0.15

1342 0.16

1359 0.17

1377 0.18

1395 0.19

1413 0.2

1431 0.21

1449 0.22

1467 0.23

1485 0.24

1504 0.25

1522 0.26

1541 0.27

1559 0.28

1578 0.29

1597 0.3
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