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Abstract
The microstructure of additively manufactured (AM) metals has been shown
to be heterogeneous and spatially non-uniform when compared to con-
ventionally manufactured metals. Consequently, the effective mechanical
properties of AM-metal parts are expected to vary both within and among
builds. Here, we present a framework for simulating process–(micro)structure–
property relationships of AM metals produced via direct laser deposition
(DLD). The framework predicts grain nucleation and competitive growth as a
function of thermal history for a multi-pass, multi-layer DLD process. The
resulting three-dimensional microstructure is automatically sub-sampled to
perform virtual mechanical testing throughout the build domain using a par-
allelized elasto-viscoplastic fast Fourier transform code, accounting for grain-
boundary strengthening. The effective stress–strain response of each sub-
sampled volume is automatically analyzed to extract effective mechanical
properties, which are used to generate property maps showing the spatial
variability of effective mechanical properties throughout the simulated build
volume. As a demonstration, the framework is applied to different DLD
stainless steel 316L build volumes having different process-induced micro-
structures. The multi-physics framework and property maps could provide a
path toward qualification of AM-metal parts.
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1. Introduction

Additive manufacturing (AM), colloquially known as three-dimensional (3D) printing, is a
manufacturing technique used for creating 3D structures by adding material in a layer-by-
layer fashion. For the last three decades, metal-based AM has gained interest for use in
manufacturing of structural parts. Common technologies used in the printing of structural
metal AM parts include laser powder bed fusion and direct laser deposition (DLD) [1], in
which a high-power-density laser source selectively melts the material for bonding. In con-
trast to traditional forming or subtractive manufacturing techniques, AM of metals allows
relatively fast manufacturing of complex geometries, seamless part consolidation, and rela-
tively little material waste.

Due to rapid solidification during the AM process, the microstructure of laser-processed
metals has been shown to be more heterogeneous and exotic compared to conventionally
manufactured metals [2]. Efforts have been carried out to create process maps that link the
trends of the microstructures to AM process parameters (in terms of the primary process
variables) [3–7]. In other studies, efforts are underway to design and locally control the
microstructure of AM metals. Dehoff et al [8] were able to induce site-specific grain sizes and
crystallographic orientation in Inconel 718 by controlling the heat and scan strategy of
electron beam AM. These efforts, among others, pave the way towards a better understanding
of microstructure variability in metal AM.

Due to the underlying microstructure variation in metal AM, the effective mechanical
properties of an AM part are expected to vary within and among builds [9]. That being said, it
is crucial to quantify the variability of the effective mechanical properties of AM metal parts
to meet the stringent requirements for part qualification in critical structural applications. In
this area, Kappes et al [10] created a database of experimentally deduced quasi-static
mechanical properties of around 3600 Inconel 718 specimens produced via laser powder bed
fusion. The results were used to train a machine learning model that could then aid in the
design process of AM metal parts by predicting effective mechanical properties of parts
printed under certain sets of processing parameters. Such experimentally based studies aid in
creating predictive tools for the design of metal AM. However, given the high dimensionality
of the AM design space, it is impractical to rely solely on experimentally derived data to
establish process–structure–property relationships. Hence, there is a need for simulation
efforts to complement experimental testing with virtual testing.

Modeling and simulations provide a path toward creating a feasible qualification fra-
mework that closes the gap in the process–structure–property–performance paradigm for AM.
A computational framework that is capable of linking the thermal process, resulting micro-
structures, and mechanical response of metal AM parts would provide a powerful and much-
needed tool for engineers to design and qualify AM parts used in critical structural appli-
cations. A very recent example of such a framework was presented by Yan et al [11]. They
presented a predictive simulation framework that combines a thermal-fluid model of molten
metals, microstructure generation, and prediction of fatigue life in metal AM. There remains a
need to leverage similar process–structure–property tools to predict the variability not only
among different builds, but even within the same build.
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In this paper, we propose a novel, integrated framework that outputs site-specific
property maps within a simulated AM build domain by accounting for relationships among
process, microstructure, and properties. This framework is then used to predict the effective
mechanical properties of an AM stainless steel (SS) 316L structure produced by DLD. This
framework could provide a path towards qualification of AM metal parts by, for example,
using it to identify potential hot-spots or unacceptable levels of variability in mechanical
properties across the build domain.

For completeness, the next two subsections present the work in the literature that has
been carried out on modeling process and mechanical behavior of metal AM. Then, in
section 2, the paper includes a description of both the process model and the solid model used
in this semi-automated framework. In the first model, we focus on the macroscale thermal
modeling and the generation of the synthetic, 3D microstructure for a DLD process. Then, a
microstructure-sensitive mechanical model based on a parallelized elasto-viscoplastic fast
Fourier transform (EVPFFT) framework is presented, along with the generation of the site-
specific property maps. Finally, in section 3, the results of the framework applied to a DLD
SS316L structure elucidate the variability of the effective mechanical properties within the
AM build.

1.1. Process modeling of additively manufactured metals

On the process modeling of metal-based AM, two primary methods for simulating mesoscale
grain structure are available in the literature: the cellular automaton (CA) method [12–16] and
the Monte-Carlo (MC) method [17]. In both methods, the grain-structure evolution is
determined by the thermal history, i.e. the temperature as a function of time and space. The
thermal history is provided either by a simulation or an idealized estimation as an input to the
grain-structure simulation.

In their recent articles, Zhang et al [12] and Rai et al [13] implemented a two-dimen-
sional (2D) CA model. Their results captured the epitaxial nucleation and competitive growth
during the grain-structure evolution as well as the consequential grain coarsening caused by
the competitive growth. Later, Zinovieva et al [15] extended the CA method to be 3D, and
investigated the 3D grain structure in a multi-layer, multi-pass build; grain coarsening and a
strong texture were reported. However, in these CA models, the nucleation is assumed to
occur only at the fusion line, and the potential ‘bulk’ nucleation ahead of the solidification
front is not considered. Improving upon the assumption, Lópeza et al [14] took into account
the effect of bulk nucleation in their 2D CA model and reported a laminar grain structure.
Extending to a 3D CA model, Panwisawas et al [16] also considered the bulk nucleation, but
only the grain structure from single-pass builds was discussed.

As for the MC model, in a recent study, Rodgers et al [17] demonstrated its capability to
simulate the grain structure in large builds. However, the crystallographic orientation of
grains was not simulated by the MC method. The simulated grain structure in this case
matched qualitatively with experimental results. No discussion on the nucleation mechanisms
were provided.

In a recent work by the co-authors [18], a 3D CA model was established to investigate
the grain structure in a DLD process for SS304. The model included both the epitaxial
nucleation at the fusion line and the bulk nucleation ahead of the solidification front. The
model was able to duplicate multiple different grain textures that had been found from
experiments, and the effects of different nucleation mechanisms on the grain structures were
discussed.
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1.2. Modeling mechanical behavior of additively manufactured metals

In metal AM, there is an increased interest in simulating the mechanical response. The
simulations are generally confined to either macroscale or microscale applications. In the
biomedical sector, work has been done by simulating the behavior of metallic AM bioma-
terials used to mimic bone structure [19, 20]. In one application, Hedayati et al [19] inves-
tigated the fatigue behavior of an open-cell lattice structure with AM Ti-6Al-4V mechanical
properties using a finite-element (FE) model. Similarly, work by Andani et al [20] compared
experimentally measured and simulated elastic moduli of NiTi open-cell lattice structures
with a user material subroutine in Abaqus.

Analytical models are another common method for predicting macroscale mechanical
behavior of metal AM. Leuders et al [21] used two models for predicting fatigue life based on
CT-measured defects (Murakami and Danninger-Weiss), applied them to AM Ti-6Al-4V, and
compared the predictions to experimentally measured values. Both models needed adapta-
tions to improve the predictions as they were originally developed for traditionally manu-
factured metals. Models have also been developed based on processing parameters and
experimental results to predict the fatigue life [22] and shear strength, hardness, and density
[23] of SS316L manufactured by laser powder bed fusion. Going further, Collins et al [24]
and Hayes et al [25] proposed a method of predicting the yield strength of Ti-6Al-4V using
neural networks and genetic algorithms to mine a process–structure–property database to
develop a constitutive equation for tensile property prediction.

While the efforts mentioned above do not simulate the microstructure explicitly, there
have been other mechanical-modeling efforts reported that consider metal AM micro-
structures generated through metal AM process modeling. Recently, Ozturk and Rollett [26]
formed a synthetic microstructure database of statistically representative dual-phase AM Ti-
6Al-4V structures and studied the relative effects of specific microstructural features on the
mechanical properties. Ahmadi et al [27] simulated an AM microstructure by repeating a melt
pool geometry with a grain structure generated via Voronoi tessellation. They simulated the
mechanical response using a cohesive zone model and compared the results to experimental
observations. Likewise, Andani et al [28] used a similar grain-structure model but investi-
gated the response of representative volume elements (RVEs) of interest within the simulated
microstructure. While the works by Ahmadi and Andani did consider a simulated micro-
structure in their mechanical simulations, neither used a physics-based approach to predict the
microstructure. Instead, they approximated the microstructure with Voronoi tessellation and
recreated the melt pool geometries. However, Yan et al [11] developed a physics-based
framework linking a powder bed fusion process simulation, grain-growth model, and a self-
consistent clustering analysis FE model to predict the fatigue life of Ti-6Al-4V. To explore
the variance within their simulated microstructure, they sampled volumes of interest, four in
total, from their two-layer build and compared the mechanical response.

It is apparent, from the literature discussed herein, that there is a need to integrate
physics-based models to predict microstructure-sensitive mechanical response and its inherent
variability through AM-build domains. Doing so will require an efficient approach to enable
high-throughput simulation.

2. Methods

A high-level overview of the process–structure–property framework is presented first, and
details of each component are provided in following subsections. A graphical representation
of the entire process–structure–property framework presented here is shown in figure 1. The
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framework begins with a thermal history model along with a novel method for grain-structure
modeling to simulate a DLD process and the resultant simulated microstructural domain.
Next, an area or layer of interest within the microstructure is selected. This layer of interest is
divided into individual subvolumes. The full-field response of each subvolume is computed
using EVPFFT formulation. From the full-field response, an effective stress–strain curve is
extracted and effective mechanical properties are calculated. This process of extracting
mechanical properties is repeated on every subvolume within the layer of interest. Once all
the properties for each subvolume are known, a site-specific spatial property map is gener-
ated. A detailed description of each portion of the framework is presented below.

2.1. DLD process modeling

In this work, a macroscale model based on the finite volume method will be first used to
predict the thermal history, which will then be used in a mesoscale CA method to predict the
grain growth during molten-pool solidification [29].

2.1.1. Macroscale thermal model. In the macroscale thermal model, as a common
assumption for the simulation in metal AM [30], the fluid flow in the molten pool is
ignored, and physics are dominated by heat conduction. The governing equation is the heat
conduction equation, written in a conservative form as:

e

t
k T S, 1

r¶
¶

-   =
( ) · ( ) ( )

where ρ is density, e is internal energy, k is thermal conductivity, T is temperature, and S is
the source term. For a DLD process, the source term comes from the laser heating (Slaser) and
the deposition of powder (Sadd); we also include in the source term the heat loss from
convection (Sconv) and radiation (Srad) at the metal–gas interface, as can be expressed by
equation (2):

S S S S S . 2laser add conv rad= + - +( ) ( )
The metal–gas interface in this work is captured by the level-set function and is treated in a
diffused manner. That is, all of the material properties such as ρ and k, are treated as the
properties of a mixture of metal and gas, and are expressed as functions of the level-set. More
details regarding the interface treatment and the calculation of the source terms in equation (2)
are found in [31, 32].

The computation domain used in the thermal simulation is shown in figure 2(a). The
three axes are the scanning direction (SD), build direction (BD), and transverse direction
(TD). The laser scans in the TD-SD plane and the part is built layer-by-layer in the +BD

Figure 1. Graphical overview of the process–structure–property framework. Each
figure is a representation of the output for each stage of the framework.

Modelling Simul. Mater. Sci. Eng. 27 (2019) 025009 C Herriott et al

5



direction. A non-uniform Cartesian mesh is used, as shown in figure 2(a). The laser only
scans in the fine mesh region (circled by the red dashed line) to guarantee an accurate thermal
gradient around the molten pool. The coarse mesh around the fine mesh is used to provide a
heat sink to avoid non-physical heat accumulation. An insulating boundary condition is
applied to all the boundaries of the computation domain. The laser scanning pattern is shown
in figure 2(b). In each layer, the laser scans in an alternating pattern along the SD and the laser
changes the starting SD by 180° every layer, as indicated by the red arrows in figure 2(b). The
output of this step of the framework is the thermal history as a function of space and time for
the simulated DLD process.

2.1.2. Mesoscale grain-growth modeling. The thermal history obtained from the macroscale
thermal simulation is interpolated in both space and time for the mesoscale CA simulation.
The interpolated thermal history then governs the microstructural evolution. The substrate and
the shape and crystal orientation for each nucleated grain result from the algorithms in [18]
and from the competitive grain growth determined by the 3D CA method in [32]. The
nucleation and 3D CA methods are described next.

Epitaxial nucleation: it is assumed that the epitaxial nucleation occurs as soon as the
temperature of a cell on the fusion line drops below the liquidus temperature, TL. A nucleus is
added to this cell and it will inherit the same crystallographic orientation as a neighboring
solid cell in the underlying layer.

Bulk nucleation: it is assumed that the nucleus density, N, is a continuous function of the
undercooling, T T TLD = - [33]:

N
N

T
T

d

d
d , 3

T

0ò=
D ¢

D ¢
D

( )
( ) ( )

where N Td d D( ) is a function of ΔT describing the increase of nuclei density with the
increase of undercooling. We assume N Td d D( ) as a Gaussian distribution:
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where N0, ΔTc, and ΔTσ are three nucleation parameters characterizing the bulk nucleation
condition. Their physical meaning is shown in figure 3. When the undercooling is around the

Figure 2. (a) The computation domain and the mesh for the FV simulation to predict
the thermal history [18]. (b) The laser scanning strategy used to simulate a direct laser
deposition process. The red arrows represent the alternating scanning path of the laser.
Reprinted from [18], Copyright 2018, with permission from Elsevier.

Modelling Simul. Mater. Sci. Eng. 27 (2019) 025009 C Herriott et al

6



interval T T T T,c cD - D D + Ds s( ), the nuclei density jumps from zero to the maximum
nuclei density, N0, with a random crystal orientation assigned to each nucleus. The three
nucleation parameters N0, ΔTc and ΔTσ have to be determined by experiment [33, 34]. In the
absence of direct experimental observations, a parametric study was conducted to investigate
the effect of the parameters on the resulting grain structure [18].

Grain growth: the grain growth after nucleation is simulated by the CA method.
Essentially, the CA method assumes the grain growth velocity is a function of the local
undercooling, and explicitly tracks the outer contour of each grain by the de-centered
octahedron scheme [29]. In this work, we use a polynomial to fit the dendrite growth
simulation result from [32] to approximate the growth velocity, Vgrowth, of grains for a given
metal, as shown by equation (5):

V T a T b T c T d, 5growth
3 2D = D + D + D +( ) ( ) ( ) ( )

where a, b, c, d are fit to the given metal, ΔT is in Kelvin, and Vgrowth is in m s−1. In this
competitive grain-growth model, grains growth preferentially along specific crystallographic
directions ( 001⟨ ⟩ for fcc and bcc materials). This competitive growth leads to the formation of
crystallographic texture that has been shown to be similar to that from experiment [18]. For
further details regarding of the implementation of the CA method, the reader is referred to
[32]. The output from the grain-growth model is a 3D, voxel-based domain, where each voxel
has a grain ID and crystal orientation assigned to it.

2.2. Microstructure-sensitive mechanical modeling

2.2.1. Automated subvolume sampling. The simulated AM build domain serves as the input
to the microstructure-sensitive mechanical modeling section of the framework. The 3D build
domain is automatically divided into discrete subvolumes that will undergo virtual
mechanical testing.

It is important to have a sufficient number of subvolumes within a domain to capture the
desired resolution in the spatial property maps, while at the same time defining the
subvolumes to exploit computational efficiency.

Although it is possible to discretize the entire build domain, it is not required and, in fact,
might be of interest to a user to investigate a specific layer or layers within the build domain,
as demonstrated in the example application described in section 3.2. Each microstructural
subvolume is passed into DREAM.3D, an open-source software for digitally representing 3D

Figure 3. Nucleation parameters of the continuous nucleation model. Reprinted from
[18], Copyright 2018, with permission from Elsevier.
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microstructures [35]. DREAM.3D is used to record a number of microstructural statistics (e.g.
average grain volume and aspect ratio) [36] and to write the input file for the EVPFFT model.
The HDF5 scheme, which provides a portable, binary format, is used to store the image along
with orientation data.

2.2.2. Parallelized EVPFFT framework. It is well known that the deformation of
polycrystalline materials is heterogeneous at the grain scale when the polycrystal is
subjected to an external loading. The heterogeneity at grain scale is due to differences in
orientation among neighboring grains combined with the anisotropic elastic and plastic
response of single crystals. Full-field crystal plasticity codes such as crystal plasticity finite
element method (CPFEM) or crystal plasticity fast Fourier transform (CPFFT) are well
established methods to predict the local heterogeneity of a polycrystalline volume. In CPFEM
calculations [37–39], a solution is given for the equilibrium of forces and the compatibility of
displacements using the principle of virtual work for a microstructural volume discretized
using a finite-element mesh. CPFFT is an alternative full-field crystal plasticity
implementation introduced by Lebensohn [40] following the pioneering work of Suquet
and co-workers [41, 42]. In CPFFT formulations, the governing equations for heterogeneous
media with periodic boundary conditions are solved by applying an FFT-based algorithm in
conjunction with Green’s function method (e.g. see Mura [43]). CPFFT is computationally
more efficient compared to CPFEM for same-size problems since FFT does not require the
inversion of a large stiffness matrix for the global solution [44].

Furthermore, unlike CPFEM, the CPFFT method does not suffer from the challenges
associated with creating meshed microstructures, which is non-trivial. For example, an entire
thesis has been devoted to microstructure representation using meshes [45].

In this framework, we use the EVPFFT formulation by Lebensohn et al [46], which is an
adaptation of CPFFT to the EVP regime for capturing full-field elastic and plastic grain
interactions of 3D polycrystalline aggregates. This is implemented within the parallelized
code, Micromechanical Analysis of Stress–Strain Inhomogeneities with fast Fourier
transforms (MASSIF), to compute the full-field micromechanical response of each
subvolume. MASSIF/EVPFFT is based on small strain formulation and uses the following
constitutive relation between local stress and strain:

x x x C x x x x t, , 6ij ij
e

ij
p

ijkl kl ij
p t

ij
p1 ,e e e s e e s= + = + + D-( ) ( ) ( ) ( ) ( ) ( ) ˙ ( ) ( )

where xije ( ) is the local strain as a summation of local elastic strain xij
ee ( ) and local plastic

strain xij
pe ( ). Local elastic strain is calculated via Hooke’s law C x xijkl kl

1 s- ( ) ( ), where xkls ( ) and
C xijkl

1- ( ) are local stress and local stiffness at each grid point. Plastic strain after each time
increment, Δt, is calculated based on an Euler discretization for the time integration of the
local plastic strain rate, which is given by:

x m x
m x x

x
m x xsgn , 7ij

p

s

N

ij
s kl

s
kl

s

n

kl
s

kl0
1

s

åe g
s

t
s=

¢
´ ¢

=

⎛
⎝⎜

⎞
⎠⎟˙ ( ) ˙ ( )

∣ ( ) ( )∣
( )

( ( ) ( )) ( )

where 0ġ is a reference shear rate, Ns is the total number of slip systems, ms is the symmetric
Schmid tensor for each slip system, s¢ is the deviatoric stress tensor, τ s is the critical resolved
shear stress (CRSS) in slip system s, and n is the rate-sensitivity exponent. The local CRSS
and Schmid tensor are updated at the end of each strain step. The evolution of local CRSS at
each point is calculated in this work by the Voce hardening law given by:
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where ta¯ is the CRSS in slip system α, hab is the latent hardening relating slip activity in slip
system β with the hardening of slip system α, gb˙ is the shear rate of slip on system β, Γ is the
accumulated slip across all slip systems, and τ0, τ1, θ0, θ1 are the Voce hardening law
parameters.

A new modification has been incorporated into the MASSIF/EVPFFT program to
account for the effects of grain-boundary strengthening, which is reported for the first time
here. Contrary to the strain-gradient theory for grain-boundary strengthening, here we take a
stress-based approach inspired by the work of Chakravarthy and Curtin [47]. Crystallographic
orientation and the possible slip directions are used to find the directed Euclidean distance to
the nearest grain boundary at each point in the input microstructure prior to the MASSIF/
EVPFFT calculation. The directed distance is defined as the distance parallel to the Burgers
vector and therefore in the slip plane of each slip system. This directed distance, dGB, is then
used to scale the initial CRSS, τ0, according to the following empirical relationship at the slip-
system level, akin to the macroscale Hall–Petch effect:

k

d v
, 100

GB

GB size
t t= +¥ ( )

where dGB is the directed distance from a given voxel to the nearest grain boundary and is
measured in units of voxels. This distance is scaled by vsize, the specified voxel size (e.g. in
units of μm/voxel). The parameter t¥ corresponds to τ0 for a specimen with an infinitely
large grain size, and kGB is the rate at which τ0 changes with distance to the nearest grain
boundary.

In the current implementation of the framework, each subvolume is subjected to
uniaxially applied displacement using the MASSIF/EVPFFT code. The simulations can be
repeated for different directions of applied displacement, if, for example, calculation of
anisotropy is desired. To run a simulation, MASSIF requires the crystal orientation of each
grain, a strain rate, the number of steps, and the cubic elastic constants and Voce hardening
parameters. The parallel HDF library [48] was implemented in the parallel MASSIF code
using an MPI package. The parallel implementation enables simulations of subvolumes
within the build domain to be computed relatively rapidly when compared to, say, CPFEM.
The computational efficiency allows for the generation of spatial property maps, described
next. More information regarding the efficiency and validation of the parallelized MASSIF
implementation can be found in [49].

2.3. Generation of site-specific property maps

2.3.1. Automated calculation of effective mechanical properties. The full-field responses
predicted by the MASSIF simulations are used to calculate effective (homogenized)
mechanical properties for each subvolume. First, an effective stress–strain curve is generated
by averaging all the deviatoric stress and strain components for each voxel across the entire
subvolume. The von Mises equivalent stress and strain are then calculated using the averaged
components. This process is repeated for each displacement step until the effective stress–
strain curve is generated.
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From the effective stress–strain curve, effective mechanical properties are calculated,
namely the effective Young’s modulus, Eeff, and the effective yield strength, y,effs , both in the
direction of applied displacement. The Young’s modulus is found by applying a Hough
transform to the stress–strain response. The Hough transform is a technique that finds the
probability that a shape or feature is present in the given data [50]. The feature in this case is a
line, y=mx+b, that corresponds to the elastic region of the data where the slope of that line
is the Young’s modulus. With the Young’s modulus, a 0.2% yield offset is applied to the
curve to approximate the yield strength. This automated process is repeated for every
simulated subvolume.

2.3.2. Graphical representation of property maps. Once the effective mechanical properties
are calculated for every subvolume, the framework generates spatial-property maps for each
loading direction in the form of a filled contour plot. On the map, each grid cell is
representative of a subvolume, and the effective mechanical properties are assigned to the
centroid of the respective subvolume. The gradient between neighboring subvolumes is
dependent on the contour plotting algorithm. For reference, vertical lines are plotted to
represent the laser scan tracks, and all coordinates are local to the dimensions of the layer
under investigation.

3. Framework application to SS316L: results and discussion

As a demonstration, the framework described above is now applied to multiple instances of
SS316L produced via DLD.

3.1. DLD process model

The process parameters and thermal properties used in the simulation of SS316L are listed in
tables 1 and 2, respectively. The constants used in equation (5) are: a=1.0909×10−5,

Table 1. Process parameters of direct laser deposition (DLD).

Laser power (W) 200
Scanning velocity (mm s−1) 26
1/e2 Beam diameter (μm) 440
Hatch spacing (μm) 250

Table 2. Thermal properties of SS316L [31].

Stainless
steel 316L

Property Solid Liquid

Density (kg m−3) 8000 8000
Specific heat (J kg−1 K−1) 500 500
Thermal conductivity (W m−1 K−1) 19.2 209
Liquidus temperature (K) 1673
Solidus temperature (K) 1648
Melting latent heat (J kg−1) 250 000
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b=−2.0336×10−4, c=2.7397×10−3, d=1.1505×10−4. The simulation domain is
discretized using an element size of 25 μm for the thermal model and a cell size of 3 μm for
the 3D CA model. An average grain size of 25 μm is assumed for the substrate.

An eight-layer build domain is simulated, with six passes in each layer and ∼250 μm
between the centerlines of the scan tracks. For the three nucleation parameters, N0, ΔTc, and
ΔTσ, we fix ΔTσ to be a negligible number, as the effects of ΔTσ on the grain structure are
found to be insignificant. Then, four combinations (labeled domains A–D) of N T, c0 D( ) are
used to explore possible grain structures, as listed in table 3.

The grain-nucleation parameters are chosen such that nucleation occurs increasingly
frequently from domain A to D. 3D views of domains A–D are shown in figure 4. The extents
of the TD, SD, and BD dimensions are 1536, 1248, and 768 μm, respectively. A 2D view of
the resulting microstructures in the SD-BD plane is shown in figure 5. The selected nucleation
parameters result in relatively large, elongated, and tortuous grains in domain A. The grains
become smaller and more equiaxed moving from domains A to D.

Figure 4. A 3D representation of each simulated microstructure generated by varying
the nucleation parameters. (a)–(d) Domains A–D, respectively.

Table 3. Grain-nucleation parameters for each microstructural domain.

Domain N0 (m
−3) TcD (K)

A 1013 10
B 1014 0
C 1015 5
D 1015 0
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3.2. Microstructure-sensitive mechanical modeling

The single-crystal elastic constants are needed by MASSIF to compute the elastic response of
each microstructual subvolume. In this example, with SS316L and SS304 being from the
same austenitic family, the values of the cubic elastic constants for the current example of
SS316L are approximated from those of SS304 [51], which are provided in table 4. In each
iteration of MASSIF, the CRSS values are obtained from the extended Voce hardening law,
seen in equation (9). The values of the Voce hardening parameters, shown in table 4, are
taken from [52] and correspond to a warm-rolled SS316L sheet sample. The three parameters
used in the distance hardening function to modify the initial CRSS are given in table 4 as
well. The values of the parameters were selected to exploit the grain-size sensitivity of the
model while still producing a realistic range of values for CRSS.

The specified voxel size is 3 μm, and the chosen subvolume size is 32×32×32 voxels
or 96×96×96 μm. To verify the stress response at this voxel size, a convergence study
was performed by doubling the voxel resolution of a subvolume, applying a displacement
using MASSIF, and comparing the effective stress–strain curve to that using the original

Figure 5. Cross-sectional views of the SD-BD plane for each microstructural domain
obtained by varying N0 and ΔTc. (a) Domain A: N 100

13= m−3, ΔTN=10 K; (b)
domain B: N 100

14= m−3, ΔTN=0 K; (c) domain C: N 100
15= m−3, ΔTN=5 K;

(d) domain D: N 100
15= m−3, ΔTN=0 K. The black dashed line indicates the

location of the fusion line from the first layer.

Table 4. Cubic elastic constants [51], Voce hardening parameters [52], and distance
hardening parameters for SS316L.

Cubic elastic constants (MPa) C11 C12 C44

204 600 137 700 126 200

Voce hardening para-
meters (MPa)

1t 0q 1q

70 105 000 410

Distance hardening parameters t¥ (MPa) kGB (MPa μm−1) vsize (μm/
voxel)

10 300 3
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resolution. There was found to be less than one percent difference between the resulting
curves, so the original resolution, 3 μm, is kept. The subvolume size is selected to be
approximately the same height as a single build layer, which is ∼100 μm. The subvolume
sampling strategy used in this example is shown in figure 6. The sampling locations within
the TD-SD plane are taken at the first, fourth, and seventh build layers, corresponding to BD
coordinates of 0–96, 300–396, and 600–696 μm, respectively, with each layer comprising
208 subvolumes. These sampling layers where chosen to investigate the variability within an
AM domain as it is built. The two sampling locations within the SD-BD plane are centered
along the third track, at TD coordinates 752–848 μm, as well as between the third and fourth
tracks, at TD coordinates 927–1023 μm. The SD-BD sampling layers each contain 104
subvolumes. These locations were picked to explore any discrepancies that might appear
between and along scan lines. The sampling location within the TD-BD plane contains 128
subvolumes and is centered in the SD, at SD coordinates 576–672 μm. In total, 960 sub-
volumes are simulated for each DLD domain using MASSIF. Furthermore, two simulations
are run for each subvolume; one simulation of uniaxially applied displacement equivalent to
1% engineering strain is applied for each in-plane direction of the given sampling-layer plane.
Among all four build domains considered in this work, a total of 7680 microstructure-
sensitive numerical simulations were completed.

A single subvolume required approximately three to four minutes on eight processors to
run the microstructure-sensitive mechanical modeling portion of the framework.

A subset of results for the full-field MASSIF simulations is shown in figure 7. In the
figure, two microstructural subvolumes are called out for each of the four build domains. The
corresponding von Mises stress field is depicted at 1% engineering strain applied in the TD.
Of note for the examples shown in figure 7 is the variability in the stress fields among the
build domains but also within the same domain. This variability is visually apparent in
Domains A and B and perhaps less so in domains C and D. The variability in the full-field

Figure 6. A 3D representation of the sampling layers and subvolumes defined for each
domain. (a)–(d) Domains A–D, respectively.
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responses due to microstructure sensitivity ultimately translates to variability in the spatial
property maps, which is discussed next.

3.3. Site-specific spatial property maps

Once each full-field calculation is complete, the framework automatically extracts the
equivalent stress–strain response and calls the Hough-transform function to extract Eeff and

y,effs , as described in section 2.3. Figure 8(a) shows the effective mechanical response of
every simulated subvolume in the TD-SD plane, with loading applied in the TD direction.
Experimental results from [52] are shown as a comparison. Recall that the material used in
[52] was a conventionally manufactured, warm-rolled SS316L sheet material. Applying the
Hough-transform function to this experimental curve resulted in a calculated yield stress of
268 MPa, which falls in the lower range of y,effs from domain A. In the literature, DLD
SS316L has been shown to have a much higher yield strength than its traditionally manu-
factured counterpart, typically in the range of 400–550MPa [53–55].

An example of the effective yield strength with respect to the average grain size of each
subvolume is shown in figure 8(b). Loading is applied in the TD direction. The average grain
size is the averaged equivalent spherical diameter of each grain in a specific subvolume [36].
As shown in both plots of figure 8, the distributions of the effective mechanical response and

Figure 7. Selected full-field MASSIF/EVPFFT results from the seventh sampling layer
in the TD-SD plane for each domain highlighting the variability in responses
throughout the layer. For each build domain, two microstructural regions are called out,
along with their respective full-field responses due to loading in the SD direction at 1%
nominal strain. The colors for the microstructures and full-field responses correspond to
the legends for the inverse pole figure and von Mises stress, respectively.
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the effective yield strength become tighter moving from domain A to D. This is most likely
related to the relative size of the grain structure. That is, since the size of the subvolumes are
fixed yet grain size varies among the builds, domain D generally has more grains per sub-
volume than domain A. As a result, the effective response of a given subvolume in domain A
is much more sensitive to the configuration and crystal orientations of the grains within that
subvolume as compared to domains B–D. On the other hand, domain D contains a sufficient
number of grains per subvolume that the responses better represent the effective response of
the material. This observation touches on an important point regarding RVEs, or RVEs.
Recall that the goal of this work is to highlight the variability in mechanical response on the
scale of something physically meaningful (in this case, the build-layer thickness). This goal is
philosophically different than that of defining RVEs. In fact, the establishment of an RVE size
for AM metals could become ambiguous and difficult to define, as even the ‘representative’
response might vary throughout the built part due to both long-range microstructural varia-
bility and also to geometrical and surface effects. While the particular issue of RVE definition
is beyond the scope of this study, it would certainly be of interest for future studies, which
could be enabled by the framework presented here.

Another noteworthy observation from figure 8(b) is that the modification of the CRSS
based on the distance-to-nearest-grain-boundary calculation described in section 2.2.2 appears
to capture the expected Hall–Petch effect. Specifically, the yield strength values appear
generally to increase from domain A (higher average grain size) to domain D (lower average
grain size), with a few exceptions that are most likely related to crystal orientation relative to
load direction. This trend was not observed prior to making the modification for grain-
boundary strengthening. This can also explain why the majority of the responses have higher
yield strength values than the experimental results from [52] (yellow curve in figure 8(a),
from which the Voce hardening parameters were taken). Recall that the modification to the
constitutive model input, described in section 2.2.2, effectively increases the nominal CRSS

Figure 8. (a) Effective stress–strain curve variance for all 3008 subvolumes in the TD-
SD plane for all build domains. Loading is in the transverse direction (TD).
Experimental curve of warm-rolled, traditionally manufactured SS316L sheet material
from [52] is shown for comparison. (b) Effective yield strength from loading in the TD
direction for all domains compared to the average grain size. Each point represents the
response of a specific subvolume. Grain size is based on the diameter of a sphere
having the equivalent volume of a given grain [36].
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based on proximity to a grain boundary, to emulate the effects of grain-boundary
strengthening.

The effective mechanical properties, Eeff and y,effs for each in-plane loading direction, are
then used to generate spatial property maps for the SS316L domains according to the pro-
cedure described in section 2.3.2. This step resulted in 24 spatial property maps per domain.
Since this results in too many figures to reasonably show and discuss, a qualitative discussion
of select results will be presented, with focus placed on the effective yield strength. It is noted
that the property maps for Eeff and y,effs show similar trends. All data for generating property
maps, including those maps not shown, can be found in the supplementary material available
online at stacks.iop.org/MSMS/27/025009/mmedia.

Figure 9 contains spatial-property maps from the TD-SD plane of each domain. The
maps show the effective yield strength for each in-plane loading direction and the sampling
location is the seventh build layer. In figure 9, the variance in the effective yield strength
decreases from domain A (top set) to domain D (bottom set). This follows the trend in figure 8
based on the decreasing grain size, as described above. There is also a notable difference in
the response based on the direction of the applied displacement. Loading in the SD direction
appears to be stronger than the TD direction. This is substantiated by figure 10, which is a
distribution of the ratio y,eff

TDs / y,eff
SDs for every build domain. As shown in figure 10, the

majority of subvolumes from each domain have a y,eff
TDs / y,eff

SDs ratio lower than unity.
Figure 10 also shows the same distribution tightening from domain A to D, with the peak of
the ratio moving closer to a ratio of unity, which implies that smaller grains and more frequent
bulk nucleation tend to remove some of the anisotropy of the simulated microstructural
domain.

The above observations regarding anisotropy can be compared to experimental obser-
vations from the literature for both conventionally manufactured and AM metals. Experi-
mentally, Moverare and Odén [56] investigated the elastic and plastic anisotropy of a hot and
cold rolled duplex SS, designated SAF2304. The material had grain sizes of 0.5–3 μm, which
are most comparable to the grain sizes from domain D, yet still significantly smaller. For the
austenitic phase, which is more analogous to the material presented here than the ferritic
phase, Moverare and Odén found that the r-value, or the plastic-strain ratio, is close to a value
of unity, with slightly more plastic deformation occurring in the TD than the rolling direction.
The crystallographic texture of the austenitic phase and its intensity, measured through x-ray
diffractometry, where found to have no significant variation when measured at various depths
below the top surface of the material. Correspondingly, there was insignificant variation of
plastic anisotropy through the depth of the material. Looking at AM materials, Debroy et al
[1], compiled and tabulated the macroscopic longitudinal (scanning direction) yield strengths
and transverse yield strengths for various AM alloys manufactured with both DLD and
powder-bed processes, as reported in literature. While scanning strategies and processing
parameters differ among the materials listed, comparisons of the values can be made to get a
general sense of the anisotropy in the yield strength for various AM alloys. For austenitic SSs
manufactured by DLD and powder-bed processes, the longitudinal yield strength was typi-
cally higher, although the difference was less pronounced for powder-bed parts. For the
titanium and aluminum alloys, little anisotropy was observed based on the transverse and
longitudinal yield strengths. The results discussed here provide some basis for comparison
with the simulated anisotropy values presented in figure 10.

In the TD direction of loading, domains A and B have fairly random distributions of
properties, but moving to C and D, a pattern emerges in the form of a periodicity with the
laser scan tracks (black vertical lines). This periodicity shows that the effective yield strength
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Figure 9. Spatial property maps of y,eff
TDs (a)–(d), and y,eff

SDs (e)–(h), for the seventh build

layer of each domain. Each set of figures corresponds to a build domain: A (a), (e); B
(b), (f); C (c), (g); D (d), (h).
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between scan lines tends to be higher than that directly along the scan line. The y,eff
TDs

periodicity trend apparent in domain D is visible not only throughout the build domain, but in
other sampling layers as well. Figure 11 compares the maps from TD-SD plane
(figures 11(a)–(c)) to the TD-BD plane map (figure 11(d)) from domain D. Effective yield
strength values are from the applied displacement in the TD direction, as that is the common
axis between the two planes. Looking at figure 11(d), the same periodicity is apparent,
alternating between the scan lines. As shown in figures 11(a)–(c), the properties and trends
seen are fairly consistent throughout the build, likely due to the consistent grain size from
layer to layer. Interestingly, a similar periodicity has been observed in experimental work by
Hayes et al [25]. In that work, the authors observed strongly textured vertical bands that
formed in an AM Ti-6Al-4V volume produced via wire-fed directed energy deposition.
Tensile samples were extracted along and between the textured bands (labeled zone A and B
in [25]), and the authors found that these adjacent bands exhibited different values and
variances of mechanical properties. Although qualitative comparisons can be drawn between
the simulation results presented in this work and the experimental results presented in [25], it
is not possible to make a more direct comparison given the significant differences between the
AM methods and materials. Similar measurements could be made for DLD SS316L to enable
a rigorous and quantitative comparison for experimental validation.

While not explicitly shown, loading in the BD direction tends to produce the same
patterns as loading in the TD direction, e.g. the periodicity in figure 11(d) is visible when
loading in the BD direction. However, this same periodicity is lost when loading in the SD
direction, which is visible in figures 9(d), (h). In fact the property distribution when loading in
the SD direction remains fairly random within all four simulated build domains.

4. General remarks and discussion

The study of the spatial variability of mechanical properties in AM metals is an important
topic for the qualification of AM-produced parts to be used in structural applications. Physical
experiments are generally destructive, costly, and limited in the amount of information that

Figure 10. Distribution of effective-yield-strength ratios depicting the differences in
plastic anisotropy among four different AM build domains for SS316L.
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they can provide. Hence, a combination of modeling process-sensitive microstructures fol-
lowed by simulation of loading on individual microstructural domains provides a powerful
tool to fill the gap in understanding of the process–(micro)structure–property of metal AM. In
this paper, we proposed a semi-automated multi-scale, multi-physics framework that simu-
lates thermal history and microstructural evolution during DLD and outputs spatially
dependent property maps at different locations of interest within the structure. This frame-
work provides a significant advancement in the understanding of the process–(micro)struc-
ture–property relationship and presents a relatively efficient technique to highlight the
existence of potential hot spots (e.g. regions of low yield strength) within the AM part prior to
(or alongside) physically building the part. The framework has potential to be extended to
other metals and AM processing parameters.

Despite the capabilities demonstrated above, there are a number of opportunities to
improve the framework. Firstly, the simulated microstructures should be validated using
microstructural data of similarly processed AM metal parts. At this stage, multiple material
parameters are used in the generation of the synthetic microstructure, but it will be important
to be able to relate the material parameters to the processing parameters by validating the
simulated microstructural domains to those measured experimentally. Experimentally vali-
dating the mechanical property predictions of the framework, while challenging, will improve
the reliability of the framework of use in the design and qualification for AM metals. Besides
validation, it will also be important to incorporate residual stresses, surface roughness, and
defects, such as pores, into the process model to yield more realistic predictive results. The

Figure 11. Comparison of effective yield stress property maps of domain D from the
TD-SD plane (a)–(c) to the map from the TD-BD sampling plane (d). The loading
direction is the common axis shared between the two sampling planes, the transverse
direction. The 3D representation of the sampling layers (bottom right) and the dashed
colored lines highlight where each sampling layer and corresponding property map
intersect within the build domain.

Modelling Simul. Mater. Sci. Eng. 27 (2019) 025009 C Herriott et al

19



process model is currently limited to DLD, and the addition of simulating powder-bed pro-
cesses would improve the flexibility of the framework. Furthermore, improvements can be
made to the hardening model to account for slip transmissibility across grain boundaries.
Future efforts will focus on addressing these shortcomings.

5. Conclusions

In this work, a semi-automated, multi-scale, multi-physics modeling framework is developed
for prediction of the effective mechanical properties throughout metal AM build domains.
The framework combines DLD process modeling with microstructure-sensitive mechanical
modeling to generate effective mechanical property maps in regions of interest within the 3D
build domain. First, the thermal history and resulting grain structure are simulated for a multi-
pass, multi-layer DLD process. The simulated microstructures replicate physical AM
microstructures found in the literature by varying different nucleation parameters used in the
process model. Then, the micromechanical responses of numerous microstructural sub-
volumes within layers of interest are simulated using the parallelized EVPFFT code, MAS-
SIF. Based on the homogenized stress–strain response of each subvolume, effective property
maps are generated for the entire region of interest.

As a demonstration, the framework was applied to four different instantiations of DLD
SS316L by manipulating the nucleation parameters. As the simulated grain structure transi-
tioned from columnar (domain A) to equiaxed (domain D), visible patterns in the effective
yield strength emerged in the resulting property maps, where the effective yield strength in the
TD and BD directions for domain D was generally lower along the scan lines and higher in
between scan lines. The same pattern was not apparent for loading in the SD direction of
domain D, or for any loading scenarios of the columnar-grained microstructures. A slight
anisotropy of the effective yield strength was observed, with the yield strength in the SD
typically higher than the yield strength in the loading direction. This anisotropy and its
variance decreased moving from domain A to domain D. Multiple hotspots were also visible
throughout the results of the framework on the DLD SS316L microstructures. The framework
clearly demonstrates that as the part is built pass by pass, if the microstructure is more
uniform (as in domain D), the spatial variability in properties can be significantly reduced,
and the effective yield strength generally becomes less anisotropic.

The process–(micro)structure–property framework provides a powerful tool that can be
used to predict the location-specific variability in mechanical properties as well as the exis-
tence and location of potential hotspots in metal AM volumes, which could have a significant
impact on the design and qualification process of metal AM structures. This framework helps
to address a technical gap (namely Gap FMP5) that was identified in a recent roadmap for
standardization of AM [57]. While currently limited to DLD and non-porous materials, an
extension to simulate powder-bed processes and defects would allow design engineers to
predict a multitude of realistic AM microstructures and the variability of their properties,
which could aid in the endorsement of metal AM for critical structural applications.
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