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A B S T R A C T

In this work, we investigate the performance of data-driven modeling for mechanical property prediction of a
simulated microstructural dataset. The dataset comprises realistic microstructural subvolumes of metal additive-
manufactured stainless steel 316L and corresponding effective mechanical properties that were generated with a
physics-driven modeling framework. The data-driven models leveraged for this work include Ridge regression,
XGBoost, and a custom 3D convolutional neural network (CNN) based on VGGNet. Morphological and crys-
tallographic features describing each microstructure serve as the inputs for the Ridge regression and XGBoost
models. The CNN is trained with a 3D image of the microstructure represented by progressively informative
input data (ranging from grain ID to crystal orientation, and supplemented with auxiliary features describing the
mechanical loading) to determine the relative improvement among different feature types. Comparisons are
drawn between the predictive performance of each data-driven model in terms of different scoring metrics and
spatial-property maps. The computational efficiency of each data-driven model and the physics-driven modeling
framework is also reported. Among all of the data-driven models tested, the CNN models that use crystal or-
ientation as input (with or without auxiliary input features) provide the best predictions, require little pre-
processing, and predict spatial-property maps in a matter of seconds.

1. Introduction

The development and use of physics-driven models to predict pro-
cess-(micro)structure-property relationships in the context of metal
additive manufacturing (MAM) has increased significantly in recent
years. As two illustrative examples, Ahmadi et al. [1] and Andani et al.
[2] generated MAM microstructures by repeatedly overlapping the
geometry of a melt pool with a grain structure generated by Voronoi
tessellation. While they did not use physics-driven modeling to predict
the MAM microstructure, they did use physics-based mechanical si-
mulations to investigate the mechanical properties of the simulated
microstructures. In another example, Yan et al. [3] used a physics-
driven approach to generate the solidified microstructure from a
powder bed fusion process and to predict its mechanical properties via
finite element modeling with a crystal-plasticity constitutive model.
Despite the importance of physics-driven models for predicting re-
lationships among process, microstructure, and mechanical properties
for MAM, such frameworks generally suffer from excessive computa-
tional costs, which can be prohibitive for high-throughput analysis or
simulation of large build domains. Recent process-microstructure-
property frameworks (e.g., [4,5]) have found success in reducing

computational expense by using a parallelized elasto-viscoplastic fast
Fourier transform (EVPFFT) solver [6,7] to compute the full-field con-
stitutive response over the microstructural volume of interest. None-
theless, there remains a need to further accelerate predictions of mi-
crostructure and mechanical response for MAM to facilitate design
engineering and certification/qualification procedures.

Data-driven modeling approaches, which include machine learning,
provide a promising path toward expediting predictions of process-
structure-property linkages. As stated in Ref. [8], “data-driven ap-
proaches aim to identify objectively (relying largely on the available
data) the embedded correlations among selected inputs and outputs
needed to study or model a given phenomenon.” For clarity herein, we
distinguish between machine- and deep-learning methods and models.
Machine learning (ML) is a broad term and can encompass any su-
pervised learning algorithm or model, such as basic linear regression,
support vector machines, and random forests. Deep learning (DL) is
considered a subset of ML and typically incorporates layers of artificial
neuron-like connections–neural networks–to extract features and
backpropagation of error to arrive at a prediction. The “deep” in deep
learning refers to the number of successive layers within the models
that extract higher-level features from the prior layers. DL models
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usually extract their own features to arrive at a prediction; whereas,
most ML models require the user to supply the relevant features for
prediction. A convolutional neural network (CNN), a type of DL model,
performs layers of convolutions with images and kernels to extract
high-level features from the original image data. CNNs excel at ex-
tracting spatial information from an input. In terms of a metallic mi-
crostructure, this suggests that a CNN could capture grain-grain inter-
actions and relationships, which might not otherwise be captured in
user-defined input features supplied to more traditional ML models.
Unless explicitly stated, “ML” will be used in the context of this paper to
refer to any methods or models that do not use an artificial neural
network for prediction. For more information regarding deep learning,
the reader is referred to Refs. [9,10].

There are many recent examples in which data-driven models have
been used for property prediction of 3D microstructures. For example,
ML and DL methods have recently been applied to 3D microstructures for
the prediction of mechanical properties using features from 2-point sta-
tistics as inputs [11,12], and using other information such as the crys-
tallographic grain orientation as an input [13,14]. Cecen et al. [11] le-
veraged 2-point statistics with CNN-interpreted features to predict the
properties of a relatively large dataset of synthetic, high-contrast com-
posites. They were able to reduce their prediction error for the CNN by a
factor of two when using 2-point statistics to augment the CNN-extracted
features as opposed to just features selected by the CNN. Jung et al. [12]
developed a database of synthetic microstructures using DREAM.3D and
also applied 2-point statistics for microstructure quantification. They
used a Gaussian process regression model and predicted the full-field
response of their microstructures. Using their framework, they were able
to determine an optimal microstructure for a given property, viz., a
microstructure of dual-phase steel that will give the highest yield
strength. In another example, Frankel et al. [13] developed a database of
synthetic polycrystals, each with fewer than 30 grains. They built a hy-
brid DL model using a CNN encoder and a recursive neural network
(RNN) to predict the elastic response and the onset of plasticity of their
polycrystals. At that length scale, the microstructure plays a significant
role in the variation in mechanical response. These few-grained poly-
crystals are somewhat analogous to the large-grained microstructures
that can be created by MAM processes. Finally, Mangal [14] augmented
a small dataset of synthetically generated microstructures and used 2D
and 3D CNNs to predict hotspots, defined as grains with a von Mises
stress above the 90th percentile. In that work, Mangal built several
models based on popular CNNs, such as a fully convolutional network
[15], Pixelnet [16], and Resnet [17]. Using various inputs, such as Euler
angles and quaternions, Mangal achieved mixed results; the 3D CNNs
were not able to optimize and make strong predictions, and the 2D
models achieved moderate success. The mixed success is likely attributed
to the limited size of the dataset and to models that were not fully tuned
to the data. While the above examples provide motivation for applying
ML and DL methods to predict properties of 3D microstructures, there
remains a need to quantify the relative performance of different ML and
DL models in terms of their abilities to predict effective mechanical
properties in MAM microstructures.

In this research, we implement and compare the performances of
different ML models (viz., Ridge regression and XGBoost) and DL
models (viz., 3D CNNs) based on predictions of location-dependent
effective mechanical properties throughout simulated MAM micro-
structural domains. The ML and DL models are applied to an expansive
dataset of realistic MAM microstructures (approximately 7700) gener-
ated in previous work by the authors using a high-fidelity, physics-
based modeling framework [4]. Volume-averaged microstructural de-
scriptors are used as inputs to the ML models; whereas, 3D image data
in the form of basic microstructural information (e.g., grain IDs) are
input to the CNN model. A secondary objective of this work is to de-
termine the relative improvement of the CNN-model predictions when
the training data include progressively informative features, including
crystal orientations, loading direction, and micromechanical Taylor

factor [18]. Because 3D CNNs account inherently for the spatial re-
lationships embedded within the data, we test the hypothesis that the
CNN models will have improved predictions over the more traditional
ML models because of their ability to learn the relationships between
3D microstructural arrangements and corresponding mechanical prop-
erties.

2. Methods

In this section, we first describe the high-fidelity, physics-based si-
mulations used to generate the training data for the ML and DL models.
Effective mechanical properties computed from physics-based simula-
tions of additively manufactured SS316L are treated as the target
output. Sections 2.2 and 2.3 describe the ML and DL models, respec-
tively, including the structure and types of inputs that are used for each
model. Finally, the method for evaluating the ML and DL model pre-
dictions is presented in Section 2.4.

2.1. Physics-driven modeling framework used to derive training data

The multi-scale, multi-physics modeling framework used to develop
the dataset for this work was introduced in previous work by the au-
thors [4]. For completeness, and to provide context for the training data
referenced in Section 2.2 and onward, a brief overview of the frame-
work and its application to additively manufactured SS316L is pre-
sented in this section. The framework leverages both MAM process
modeling along with microstructure-sensitive, solid-mechanics mod-
eling to generate realistic microstructures and calculate their effective
mechanical properties, respectively. Any unspecified parameters, such
as the thermal properties and cubic elastic constants for SS316L, can be
found in Ref. [4].

2.1.1. Process model
Thermal model: In previous work, a macroscale finite-volume

model was used to predict the thermal history of a direct laser de-
position (DLD) process. The metal-gas interface was captured by a level-
set function, as outlined in [19], and fluid flow in the molten pool was
ignored. The laser power (represented by a Gaussian distribution) was
set to 200 W, with a e1/ 2 beam diameter of 440 μm and a scanning
velocity of 26 mm/s. The hatch spacing was 250 μm. The three axes of
the computational build domain are labeled as the scanning direction
(SD), build direction (BD), and the transverse direction (TD). The si-
mulation domain for the thermal model used an element size of 25 μm.
The simulated laser scanned in an alternating pattern along the SD
direction, with the starting direction of the laser rotating by °180 every
successive layer.

Grain-growth model: The resultant thermal history was utilized by
the mesoscale grain-nucleation and grain-growth simulation, which
employed a 3D cellular automata (CA) model [20]. Both epitaxial and
bulk nucleation were considered. Epitaxial nucleation occurs when the
temperature of a cell along the fusion line drops below the liquidus
temperature. A nucleus forms in this cell with the same orientation as a
neighboring cell in the previous layer. Bulk nucleation is a function of
the maximum nuclei density, N0; the critical undercooling value, Tc;
and the standard deviation of the undercooling, T . Varying the nu-
cleation parameters affects the amount of grain nucleation and the re-
sulting grain structure in the build, as detailed in [19]. The grain
growth post nucleation was determined by the CA method, which as-
sumed the growth velocity as a function of the local undercooling. A
polynomial fit developed from [21] was used to approximate the
growth velocity.

Four total builds were simulated using the method outlined above.
Each build was simulated with varying grain-nucleation parameters.
While the standard deviation of the undercooling, T , was found to
have little effect [19], N0 and Tc were varied such that the micro-
structures range from fully columnar to fully equiaxed. The four build
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domains, referred to as domains A-D, are shown in Fig. 1. The pre-
dictive capability of this grain-nucleation and grain-growth model has
been qualitatively validated against experimental MAMmicrostructures
in Ref. [19].

2.1.2. Solid-mechanics model
Subvolume sampling: Once the four build domains were gener-

ated, each one was divided into six sampling layers of interest (see
Fig. 2), which were then further discretized into individual subvolumes

that served as the input to the crystal-plasticity modeling portion of the
framework. Each subvolume is × ×96 96 96 µm3 (approximately the
same height as a build layer) with a voxel size of 3 µm. Each voxellized
subvolume was passed through DREAM.3D, which was used to quantify
microstructural features (detailed in 2.2.1) and to write the input for
the EVPFFT model. Note that the three layers in the TD-SD plane shown
in Fig. 2 were chosen to investigate the variability within an AM do-
main with respect to the build direction. The two sampling layers in the
SD-BD plane, one centered along a laser-scan track and the other

Fig. 1. A 3D representation of each simulated microstructure generated by varying the nucleation parameters in the multi-scale, multi-physics modeling framework
reported previously by the authors [4]. Figures (a)–(d) refer to Domains A–D, respectively. Data from the four domains are used as training and testing data in the
current work.

Fig. 2. A 3D representation of the sampling layers and subvolumes defined for each domain, as reported previously by the authors [4]. Figures (a)–(d) refer to
Domains A–D, respectively. The individual subvolumes serve as the data used for training and testing the data-driven models in this work. For Domains A and D, the
middle sampling layer in the TD-SD plane is treated as a holdout layer used to test the performance of the data-driven models in predicting an entire property map for
the respective sampling layer.
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between two successive tracks, were selected to explore any variability
that might appear between and along scan lines.

MASSIF/EVPFFT: The elasto-viscoplastic fast Fourier transform
code, also known as Micromechanical Analysis of Stress-Strain
Inhomogeneities with fast Fourier transforms (MASSIF), is a computa-
tionally efficient, full-field crystal-plasticity solver, originally developed
by Lebensohn et al. [6]. MASSIF uses the Voce hardening law to update
the critical resolved shear stress (CRSS) at each time step and for all slip
systems at every point in the model. The MASSIF code is parallelized
and uses the HDF5 file format for faster I/O speeds. A modification was
made to the MASSIF code to account for grain-boundary strengthening,
which was initially reported, along with the MASSIF formulation, in
Ref. [4]. All subvolumes were loaded uniaxially to 1% strain in each of
the two in-plane directions for a given sampling layer of interest.

2.1.3. Site-specific property maps
The full-field response of each microstructural subvolume was

homogenized to extract an effective stress-strain curve. A modified
Hough transform code was applied to the stress-strain curve to calculate
the effective Young’s modulus and the effective yield strength, for each
direction of the applied displacement. These effective mechanical
properties were then visualized in the form of a heat map, or contour
plot. The property maps were qualitatively validated in previous work
[4] by comparison with experimental observations from the literature.
While ongoing work focuses on quantitative validation, the qualita-
tively validated property maps from the physics-driven modeling fra-
mework are treated as the reference solution to which all ML- and DL-
model predictions are compared.

2.1.4. Raw (unprocessed) dataset passed to the machine- and deep-learning
models

The resulting dataset that serves as the basis for training the ML and
DL models in the current work consists of the voxel-based micro-
structure for each subvolume, along with the corresponding effective
mechanical properties (viz., effective yield strength) for specific loading
directions, as predicted by the high-fidelity, multi-physics modeling
framework presented above. For the ML and DL models, the raw data
(i.e., the × ×96 96 96 µm3 voxellized subvolumes) are then subjected to
feature extraction, which is described in the next section. Each of the
four MAM build domains comprises 960 unique microstructural sub-
volumes, each with a corresponding effective yield strength in the two
in-plane directions of the sampling layer (e.g., a property map in the
TD-SD plane includes effective yield strength values in the TD and SD
directions). This gives a total of 1920 subvolume/mechanical property
combinations per microstructural domain, resulting in 7680 data points
total among the four MAM build domains. To the authors’ knowledge,

this is currently one of the largest datasets of its kind used for me-
chanical-property prediction of 3D microstructures with machine and
deep learning. Other datasets have ranged from 1100 to 5900 micro-
structures [11,12,14]. It is also the only dataset for which the input
microstructures were simulated using a physics-based model, and not
synthetically generated by a program such as DREAM.3D [22].

2.2. Machine learning methods: Ridge regression and XGBoost

2.2.1. Feature extraction and data pre-processing
Various morphological and crystallographic descriptors are ex-

tracted to parameterize the microstructure in each subvolume and to
serve as inputs to the Ridge regression and XGBoost models. The full list
of features is found in Table 1, and select features are detailed here. The
Schmid factor relates the tensile axis to the crystallographic slip plane
normal and is defined as:

=m cos cos( ) ( ), (1)

where is the angle between the global tensile axis and a given slip
direction within the slip plane, and is the angle between the tensile
axis and the slip plane normal. The Schmid factor is typically used to
determine which slip plane and direction will resolve the highest shear
stress (i.e., which slip system will first meet the condition for slipping,
assuming a fixed CRSS and global loading direction). Since SS316L is
face-centered cubic (FCC), 12 Schmid factors are calculated for each
grain, one for each slip system. The Schmid factor with the highest
value is then assigned to each voxel within that grain. The slip trans-
mission factor measures the compatibility between active slip systems
in neighboring grains [23]. The factor is represented as the dot product
of the angle between slip directions in neighboring grains with the
angle between the slip plane normals. The micromechanical Taylor
factor is calculated during simulated deformation and is quantified as
the accumulated local crystallographic shear normalized by the local
von Mises strain [18]. The average distance features are calculated by
measuring the Euclidean distance (in voxels) to the nearest grain
boundary, triple junction, and quadruple point for each voxel. Then, for
a given grain, the values of all cells (voxels) within that grain are
averaged.

All features used by the Ridge regression and XGBoost models, ex-
cept the texture index and the micromechanical Taylor factor, are ex-
tracted as per-voxel or per-grain values using DREAM.3D’s suite of
crystallographic analysis filters [22]. MTEX [24] is used to calculate the
orientation distribution function (ODF) and corresponding texture
index of each subvolume. The voxel-based values of micromechanical
Taylor factor computed using MASSIF (taken at the final loading step)
are converted to grain-averaged values. Finally, grain volume-weighted

Table 1
List of all microstructural descriptors used as inputs to the Ridge regression and XGBoost models. Except for the texture index (T), each descriptor is converted to a
grain-volume-weighted average and standard deviation, resulting in two scalar values per descriptor, or 35 descriptors in total per microstructural subvolume.

Feature Name Symbol Description

Volume V Average grain volume
Axis lengths a b c, , Semi-axis lengths of a best-fit ellipsoid for each grain
Aspect ratio b a c a/ , / Ratios of the semi-axis lengths
Number of neighbors NN Number of neighboring grains for a given grain
Equivalent spherical diameter ESD Diameter of a sphere with a volume equivalent to that of a given grain
Omega-3 3 3rd invariant of the second-order moment-of-inertia tensor
Surface area to volume ratio SA V: Ratio of grain surface area to grain volume
Average distance to grain boundary dGB Distance to the nearest grain boundary for a given grain
Average distance to triple junction dTJ Distance to the nearest triple junction for a given grain
Average distance to quadruple point dQP Distance to the nearest quadruple point for a given grain
Schmid factor m Schmid factor of the slip system with the highest value for each grain
Micromechanical Taylor factor Mmicro Accumulated local crystallographic shear normalized by the local von Mises strain, averaged for each grain
Average misorientation Avg Average misorientation of neighboring grains to a given grain
Texture index/strength T L-2 norm of the orientation distribution function (a measure of how strongly a subvolume is textured)
Average slip transmission factor (m-prime) m A factor that measures the ease of slip transmission across a given grain boundary

C. Herriott and A.D. Spear Computational Materials Science 175 (2020) 109599

4



averages1 are calculated to obtain a single scalar value for each feature
to describe a given microstructural subvolume. For every feature except
the texture index, volume-weighted Gaussian standard deviations are
also calculated and used as additional features to capture the dis-
tribution within a given subvolume. Before being passed into an ML
model, each feature is standardized by subtracting the feature’s mean
and dividing by the standard deviation. In total, 35 different features
are used to parameterize each subvolume and serve as the inputs to the
Ridge regression and XGBoost ML models. We note that the micro-
mechanical Taylor-factor feature is based on the MASSIF simulation of
each subvolume, so its use is impractical in the context of replacing
high-fidelity numerical simulation with ML models. It is included to
provide a qualitative verification of the ML-model predictions; that is,
we expect to see strong improvement in predictions of effective yield
strength after adding the micromechanical Taylor factor to the training
data due to the fundamental relationship between them. The results
with and without including the micromechanical Taylor factor are
presented in Section 3.1.

2.2.2. Machine-learning regression models
Ridge regression is implemented via the Scikit-Learn Python dis-

tribution [25]. Ridge, or Tikhonov, regression uses linear least squares
with L2 regularization [26]. Ridge regression seeks to minimize the
following objective function:

= +Xw y w|| || || || ,2
2

2
2L (2)

where X are the inputs, y are the targets, w are the coefficients or
weights, and is a tunable regularization parameter. Here, X are the
features defined in Table 1 and y are the target values of effective yield
strength for the subvolumes used in training. Ridge regression, which is
typically used when the data suffer from multicollinearity, is chosen
here to serve as a basic model comparison. Fivefold cross validation is
used to fit the regularization penalty parameter, . A final (tuned) value
of 0.35 is selected for .

XGBoost is a popular gradient-boosting ML package [27]. Its po-
pularity comes from its speed [27], effectiveness [28], and compat-
ibility with Python and Scikit-Learn. XGBoost minimizes its objective
function by ensembling multiple decision trees and adding the tree
predictors to correct prior models. The weights are updated after each
iteration via gradient descent. During hyperparameter tuning, a fivefold
cross-validation randomized search method is used to help reduce
overfitting [29]. For each cross-validation fold, the search function
generates a specified number (in this case, 100) of random sets of hy-
perparameter combinations and evaluates the model using those
random sets. The hyperparameters to be tuned include maximum
depth, number of trees, minimum samples per leaf, and the minimum
samples per split. The final (tuned) values for the aforementioned hy-
perparameters are found to be 6, 100, 3, and 2, respectively.

The Ridge regression and XGBoost models serve as benchmark
comparisons to test whether the CNN models perform better due to
their ability to extract spatial information from raw image data.

2.3. Deep learning method: convolutional neural network

2.3.1. CNN input features
Unlike the ML models described above, the CNN model does not

require extraction of subvolume-based features to parameterize a given
microstructure. Rather, the input is based on a 3D image of the mi-
crostructure. In this study, the 3D images passed to the CNN are simply
the voxellized, microstructural subvolumes along with their corre-
sponding effective mechanical properties derived from the physics-
driven modeling framework. One of the objectives of this study is to

assess how the performance of the DL model changes when trained with
progressively informative input data. The most basic description re-
quires only the image data of the microstructural subvolume (either
grain ID or crystal orientation for each voxel); a more informative de-
scription also includes information about boundary conditions (e.g.,
loading direction); and the most informative description includes me-
trics computed from the crystal-plasticity simulations (e.g., micro-
mechanical Taylor factor). To test the relative performance, eight dif-
ferent CNN models (all having the same architecture) are trained with
different voxel-based feature data, or channels. Four CNN models are
trained with grain ID as the primary channel, and four are trained with
crystal orientation, represented by quaternions, as the primary chan-
nels. The number of input channels can vary depending on the com-
bination of the primary feature data with or without auxiliary features,
described next.

Of the four models having either grain IDs or quaternions as the
primary channel(s), one model has an additional “one-hot” vector de-
scribing the global loading direction applied to the microstructural
subvolume. Since the loading vector is constant for an entire sub-
volume, it is incorporated immediately before the fully connected layer
in the CNN architecture (described in the next subsection), as opposed
to having its own channel during convolution.

Another of the four CNN models has, in addition to grain IDs or
quaternions, the Schmid factor as an input channel. The Schmid factor
for each voxel is calculated according to the method described in
Section 2.2.1.

Finally, one of the four CNN models has, in addition to grain IDs or
quaternions, the micromechanical Taylor factor (taken at the last
loading step) as an input channel. As mentioned previously for the ML
models, it is counterproductive from a prediction/application stand-
point to train the DL model using features derived from the crystal-
plasticity simulation, given that the overall objective of using the ML/
DL models is to circumvent the expensive physics-based simulations to
make rapid forward predictions. However, the purpose of doing so here
is twofold: 1) to verify the CNN model predictions, because we know
that the micromechanical Taylor factor is directly related to the effec-
tive yield strength of the microstructure, and 2) to quantify relative
performance of the previously mentioned CNN models, which are
trained using data that do not require crystal-plasticity calculations. All
CNN data are standardized before use in training.

2.3.2. Convolutional neural network architecture
The CNN architecture built for this work is a 3D implementation of

the first three convolutional blocks of VGGnet [30], with four fully
connected (FC) layers at the end. Each convolutional layer uses a

× ×3 3 3 kernel size and He normal weight initialization [31]. A rec-
tified linear unit (ReLU) activation [32] is used for all convolution and
FC layers. After the convolutional section, a dropout layer [33] with a
rate of 0.75 is used. The first two FC layers contain 1024 hidden units,
followed by 512 hidden units before the final output layer. No layers
were pretrained. Because this is a regression task, the model seeks to
minimize the mean-squared logarithmic error. The Adam [34] optimi-
zation function with AMSGrad [35] enabled is used with an initial
learning rate of 0.0005. The learning rate is reduced by half upon the
plateauing of the validation loss. The CNN stops training if the vali-
dation loss does not improve after 11 epochs.

The input subvolumes are of size × ×32 32 32 voxels, or
× ×96 96 96 µm3, and contain one to five channels depending on what

combination of primary and auxiliary features are used, as described in
the previous subsection. As previously mentioned, since the one-hot
loading direction feature does not change spatially, it is added to the
model after the final convolution and before the FC layers. Fig. 3 de-
picts the CNN architecture developed for this work.

1 The volume of a grain is calculated by multiplying the volume of a voxel,
× ×3 3 3 µm3, by the number of voxels associated with that grain.

C. Herriott and A.D. Spear Computational Materials Science 175 (2020) 109599

5



2.4. Evaluation of ML- and DL-model predictions

To evaluate the performance of the ML and DL models, two scoring
metrics, the root mean squared error (RMSE) and R2 value, are calcu-
lated based on the reference values of effective yield strength computed
using MASSIF (see Section 2.1). Scores for the ML and DL models are
calculated separately for a holdout dataset (832 data points) and for the
remaining dataset (6848 data points), the latter of which is divided into
a randomized 80/20 train/test split. It is noted that during the training
phase for the CNN, 10% of the training data is set aside for model va-
lidation to help prevent overfitting. The train/test split data are also
stratified such that each split contains a proportionate number of sub-
volumes from each build domain. The holdout dataset, which comprises
all subvolumes in the middle sampling layer of the TD-SD plane for both
Domain A and Domain D (shown in Fig. 2), is used to investigate
through blind prediction how well the ML and DL models predict the
spatial variability of the effective mechanical properties. These two
MAM build domains are chosen for the blind predictions because they
represent the microstructural extremes of the AM SS316L dataset–fully
columnar and fully equiaxed grain structures, respectively. The inputs
to the Ridge regression and XGBoost models are the feature vectors
described in Section 2.2.1, and the CNN inputs are the 3D micro-
structure images detailed in Section 2.3.1. Once trained, each ML and
DL model is used to predict a spatial-property map for the two holdout
layers, where the property shown is the effective yield strength in the
transverse direction. The property maps for the holdout layers in Do-
mains A and D are then directly compared to the corresponding maps
generated using crystal-plasticity modeling.

3. Results and discussion

3.1. Ridge regression and XGBoost predictions

Table 2 provides the scores for the Ridge regression and XGBoost
models trained using the features listed in Table 1, either excluding or
including the micromechanical Taylor-factor feature. Focusing on the
performance metrics for just the holdout set (i.e., the blind prediction

for one entire sampling layer in Domains A and D) and excluding the
micromechanical Taylor-factor feature, the Ridge regression model
performs marginally better than the more complex XGBoost model. On
the 80/20 test-split data, the XGBoost model performs marginally better
than the Ridge regression model. However, neither model seems to
outperform the other significantly in terms of R2 or RMSE values. As
expected, the addition of the micromechanical Taylor-factor feature
makes a marked improvement to both models.

Figs. 4 and 5 provide visual comparisons of the property maps
predicted by the different ML models for the holdout layer in Build
Domains A and D, respectively. In each figure, the corresponding
property map based on the high-fidelity, crystal-plasticity simulations
(see Section 2.1) is also shown for reference. The contour limits cor-
responding to the maps of effective yield strength are set to those of the
reference map. For Domains A and D (Figs. 4 and 5, respectively), the
two types of ML models show similar predictions in the spatial dis-
tributions of effective yield strength, which is consistent with the si-
milarities in performance metrics reported in Table 2. Both ML models
are also able to recover the banded pattern in Domain D. However,
neither model does particularly well at predicting the extremes of the
MASSIF-simulated yield strength range. As anticipated, the addition of
the micromechanical Taylor factor recovers the trends of the MASSIF-
simulated maps, with the XGBoost model capturing more of the hot
spots of lower yield strengths than the Ridge regression model.

3.2. Convolutional neural network predictions

The CNN-model scores for the predictions of effective yield strength
are provided in Table 3. Scores for eight different CNN models are
presented, where each model was trained using either grain ID or
crystal orientation as the primary channel(s), and, in six cases, an
auxiliary channel (Schmid or micromechanical Taylor factor) or a one-
hot vector representing the global loading direction. These results are
discussed further in Sections 3.3 and 3.4.

Figs. 6 and 7 provide visual comparisons of the property maps
predicted by the different DL models for the holdout layer in Domains A
and D, respectively. Figs. 6a and 7a show the property maps from the
high-fidelity, crystal-plasticity simulations for reference. Figs. 6b–e and
7b–e show the CNN-predicted maps for the two build domains when
grain ID is used as the primary feature, and Figs. 6f-i and 7f-i show the
CNN-predicted maps when quaternions are used as the primary feature.
In all cases, the contour limits corresponding to the maps of effective
yield strength are set to those of the reference map. The differences
among the CNN-predicted maps are discussed further in the next two
subsections.

3.3. Comparison between machine- and deep-learning predictions of
effective mechanical properties

The results presented above are now synthesized to compare the ML
and DL predictions of effective yield strength. When comparing the ML
and DL models, focusing on predictions for the holdout dataset and

Fig. 3. Architecture of the 3D convolutional neural network based on VGGNet. The concatenation layer is optional and is only used when the load direction vector is
included.

Table 2
Scores for the Ridge regression and XGBoost models when predicting the ef-
fective yield strength for the MAM microstructure dataset.

Machine-Learning Models Dataset

80/20 Split Holdout set

Input features R2 RMSE (MPa) R2 RMSE (MPa)

Ridge Regression Without Mmicro 0.74 14.66 0.77 20.03

With Mmicro 0.86 10.64 0.93 10.85

XGBoost Without Mmicro 0.79 13.14 0.74 21.12

With Mmicro 0.90 9.172 0.94 10.01
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excluding the micromechanical Taylor-factor feature, the scores for the
CNN model trained using grain IDs (either alone or with an additional
feature) are lower than those for either of the two ML models (R2 range
of 0.68–0.70 compared to a range of 0.74–0.77). However, when the
CNN model is trained using quaternions as the primary channels (either
alone or with an additional feature), the scores are higher than those for

either of the two ML models (R2 range of 0.81–0.86 compared to a
range of 0.74–0.77). Interestingly, when the CNN model is trained using
only quaternions, without any other information, the CNN model
achieves an R2 value of 0.84 and an RMSE value of 16.57 MPa based on
blind predictions of the holdout layers in two different MAM build
domains.

Fig. 4. Comparison of property maps (viz., effective yield strength in the transverse direction) predicted by different machine-learning models for the holdout layer
indicated in Build Domain A: (a) for reference, property map generated using crystal-plasticity modeling [4]; (b) Ridge regression, excluding Mmicro from training set;
(c) Ridge regression, including Mmicro in training set; (d) XGBoost, excluding Mmicro from training set; (e) XGBoost, including Mmicro in training set. Vertical black lines
correspond to laser scan tracks.

Fig. 5. Comparison of property maps (viz., effective yield strength in the transverse direction) predicted by different machine-learning models for the holdout layer
indicated in Build Domain D: (a) for reference, property map generated using crystal-plasticity modeling [4]; (b) Ridge regression, excluding Mmicro from training set;
(c) Ridge regression, including Mmicro in training set; (d) XGBoost, excluding Mmicro from training set; (e) XGBoost, including Mmicro in training set. Both models are
able to recover the banded pattern present in (a). Vertical black lines correspond to laser scan tracks.
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For Build Domain A (Figs. 4 and 6), ignoring the models that include
the micromechanical Taylor factor, the CNN models that are trained
using quaternions predict maps of effective yield strength that are much
more similar to the reference map than any of the other ML or DL
predictions. Unlike the ML-model predictions (Fig. 4), the CNNs trained
with quaternions are able to predict the general patterns of effective
yield strength, even without including any auxiliary features. While
some of the CNN models are able to capture the general patterns in the
property map of Domain A, neither the ML nor DL models, in the ab-
sence of the micromechanical Taylor factor, are able to capture the
extreme values of yield strength for that domain. It is anticipated that
more training data would further improve the predictions.

For Build Domain D (Figs. 5 and 7), ignoring the models that include
the micromechanical Taylor factor, both the ML models and the DL
models trained using quaternions are able to predict the banded pattern
that is apparent in the reference property map. However, the CNN
models are better able to match the range of yield strength values
present in the holdout layer for Build Domain D than are either of the
ML models. It is worth noting that the periodicity with respect to the
laser scan lines, resulting in the banded pattern shown, has been ob-
served experimentally under certain MAM build conditions. For ex-
ample, Hayes et al. [36] observed strongly textured and qualitatively
similar bands that formed in a Ti-6Al-4V volume produced via wire-fed
directed energy deposition. Further comparison between experimental
observations and the simulated property maps that serve as the re-
ference solution (i.e., from physics-driven modeling) can be found in
Ref. [4].

To summarize the comparison between the ML- and DL-model
predictions, the ML models (Ridge regression and XGBoost) outperform
the DL models (i.e., CNNs) when the latter rely on grain IDs as the
primary input; however, the DL models that use crystal orientation as
the primary input significantly outperform all other models considered,
achieving an R2 value upwards of 0.86 in blind predictions of the
holdout layers for two different MAM build domains. Furthermore, the
DL models offer the benefit of requiring very little pre-processing and
feature extraction, instead allowing the model, itself, to extract relevant
higher-level features from the image data.

3.4. Effect of input-data type on CNN predictions

We now focus on the results from Table 3 and Figs. 6 and 7 to in-
vestigate the effect of using progressively informative features on the
prediction performance of the DL models. First, we focus on CNN pre-
dictions made using grain IDs as the primary input channel. One in-
teresting observation is that the degree of spatial variability of prop-
erties predicted by the CNN models trained using grain IDs as the
primary feature is vastly different between Domains A and D. Notice

that the CNN predictions in Fig. 6b-d for Domain A exhibit very little
spatial variability; whereas, the predictions by the same CNN models
for Domain D (Fig. 7b–d) exhibit significant variability, with some
predictions falling outside the range of the reference yield-strength
values. The ability of a given CNN model to discern spatial variability in
properties is different between Domains A and D likely because of the
vastly different grain structures between the two domains and because
there is a greater variance of input values (grain IDs) in Domain D than
in Domain A.

On the other hand, the spatial variability of mechanical properties is
much more consistent between Domains A and D for the CNN models
trained using quaternions as the primary input. In fact, the performance
of the CNN models trained using quaternions is significantly better than
that of any corresponding CNN model trained using grain IDs. This is
evident from both the property maps shown in Figs. 6 and 7 and from

Table 3
Scores for the CNN models when predicting the effective yield strength for the
MAM microstructure dataset.

Deep-Learning Models Dataset

80/20 Split Holdout set

Primary Feature Auxiliary
Feature

R2 RMSE
(MPa)

R2 RMSE
(MPa)

CNN Grain ID – 0.70 15.81 0.68 23.45
Load vector 0.76 14.10 0.70 22.70
Schmid factor 0.69 15.89 0.68 23.67
Mmicro 0.87 10.32 0.94 10.08

Quaternions – 0.80 12.78 0.84 16.57
Load vector 0.83 11.85 0.86 15.53
Schmid factor 0.79 13.26 0.81 18.15
Mmicro 0.90 9.206 0.95 9.230

Fig. 6. Comparison of property maps (viz., effective yield strength in the
transverse direction) predicted by deep-learning models for the holdout layer
indicated in Build Domain A: (a) for reference, property map generated using
crystal-plasticity modeling [4]; (b–e) CNNs with grain ID as the main feature in
the training data; (f-i) CNNs with quaternion as the main feature in the training
data. Auxiliary features used to train each model include: (b,f) none; (c,g) one-
hot vector representing the global loading direction; (d,h) Schmid factor; (e,i)
micromechanical Taylor factor. Vertical black lines correspond to laser scan
tracks.

C. Herriott and A.D. Spear Computational Materials Science 175 (2020) 109599

8



the scores reported in Table 3. In general, the improved performance
and more consistent predictions of spatial variability between build
domains for CNN models trained with quaternions confirms that, unlike
grain IDs, crystal orientations provide a physically based input from
which relevant information about crystallographic arrangements and
textures can be extracted and linked to mechanical properties.

The most fundamental representation of the microstructure is the
image depicting the spatial arrangements of grains, and we have just
shown that crystal orientations lead to better predictions of mechanical
properties than simply using grain IDs to represent the spatial ar-
rangement of grains, but what is the impact of including more in-
formative features pertaining to the mechanical loading conditions?
The most basic representation of the applied boundary conditions is a
vector describing the axis of uniaxial loading, which is treated as a one-
hot vector input just before the multi-layer perceptron (see Fig. 3). As

shown in Table 3, whether the primary input is an image of grain IDs or
crystal orientations, there is a minor improvement in predictions of
effective yield strength if the loading vector is also included. Although
minor (R2 improvement of 0.02 in the case of the holdout-layer pre-
dictions), the improvement in model performance might be worth the
negligible cost of including the vector. A more costly representation of
the loading is the Schmid factor, which is calculated per grain and input
as a separate channel prior to convolution. Interestingly, including the
Schmid factor leads to either no difference or to a slight decrease in the
CNN-prediction scores. It appears that incorporating the Schmid factor
somehow obfuscates the relevant relationships between the crystal-
lographic arrangements and the effective yield strength. One possible
explanation for this is that max-pooling during convolution (see Fig. 3),
combined with the fact that the Schmid factor does not account for
grain-grain interactions, leads to irrelevant or unrepresentative in-
formation being passed to the multilayer perceptron (i.e., the fully
connected layers). However, this idea remains to be tested. The most
informative and computationally expensive metric that introduces the
mechanical loading into the DL model is the micromechanical Taylor
factor, which is computed from the high-fidelity, crystal-plasticity si-
mulations described in Section 2.1. Including the micromechanical
Taylor factor as an input channel, in addition to either grain IDs or
quaternions, leads to R2 values for the holdout dataset of 0.94 and 0.95,
respectively. While it is considered impractical to include results from
the crystal-plasticity simulations as input to the DL model, the result
provides verification that the CNN model is mapping the inputs to the
target outputs in an expected manner.

3.5. Implications of ML and DL models in microstructure-property
predictions

The primary motivation for exploring the use of ML and DL models
in this work is to expedite the prediction of microstructure-sensitive
mechanical properties for MAM compared to more expensive simula-
tions involving physics-based constitutive models. For comparison, the
time required to simulate one microstructural subvolume (up to 1%
strain) is approximately 185 s on eight CPUs using the MASSIF fra-
mework described in Section 2.1. Given that there are 208 individual
subvolumes comprising a single layer in the TD-SD plane of a given
build domain, the time required to generate an entire map of effective
yield strength for one of the holdout layers reported above is approxi-
mately 85 CPU hours using MASSIF. Training the ML models requires
approximately three minutes for XGBoost and three minutes for Ridge
regression (although, the majority of this time is spent on loading the
data into memory). For the CNN models, training requires approxi-
mately 99 s per epoch on an NVIDIA GeForce GTX 1070 machine. While
runtime for training the CNN can vary because early stopping is used,
most models are trained in one to four hours. Remarkably, once trained,
each of the ML and DL models predicts the complete map of effective
yield strength for a given holdout layer in less than two seconds on a
single processor. Such rapid predictions have significant implications
for high-throughput explorations of MAM design space and possibly for
real-time prediction of properties during the MAM process.

While this work focuses on applying ML and DL models to improve
the efficiency of the structure-to-property predictions for MAM micro-
structures, there is a significant opportunity to apply similar approaches
to improve the efficiency of process-to-structure predictions for MAM.
The ultimate aim is to enable rapid and reasonably accurate process-
structure-property predictions to support MAM design, optimization,
qualification, and certification.

4. Conclusions

This work investigates the ability of machine-learning (ML) and
deep-learning (DL) models to predict microstructure-sensitive me-
chanical properties in metal additive manufacturing (MAM) using

Fig. 7. Comparison of property maps (viz., effective yield strength in the
transverse direction) predicted by deep-learning models for the holdout layer
indicated in Build Domain D: (a) for reference, property map generated using
crystal-plasticity modeling [4]; (b–e) CNNs with grain ID as the main feature in
the training data; (f-i) CNNs with quaternion as the main feature in the training
data. Auxiliary features used to train each model include: (b,f) none; (c,g) one-
hot vector representing the global loading direction; (d,h) Schmid factor; (e,i)
micromechanical Taylor factor. Vertical black lines correspond to laser scan
tracks.
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results from high-fidelity, multi-physics simulations as training data. In
previous work [4], four AM build domains exhibiting vastly different
microstructures of SS316L were simulated using crystal-plasticity
modeling to generate maps of effective mechanical properties (viz.,
effective yield strength in a given loading direction). The resulting
microstructural subvolumes and corresponding yield-strength values
(approximately 7700 data points in total) are used in this work to train
two types of ML models (Ridge regression and XGBoost) and one type of
DL model (CNN). The ML models require substantial pre-processing to
extract volume-averaged descriptors that describe the microstructure of
a given subvolume; whereas, 3D image data in the form of basic mi-
crostructural information (e.g., grain IDs) are input to the CNN model,
from which higher-level features are extracted through the convolution
process. Because 3D CNNs account inherently for the spatial relation-
ships embedded within the data, we test the hypothesis that CNN
models have improved predictions over the ML models because of their
ability to learn the relationships between 3D microstructural arrange-
ments and corresponding mechanical properties. A secondary objective
of this work is to quantify the relative improvement of the CNN-model
predictions when the training data include progressively informative
features beyond just grain IDs. Based on the ML- and DL-model pre-
dictions of effective yield strength, the following conclusions are made:

• The simple Ridge regression model, essentially a linear least-squares
model with L2 regularization, performed approximately the same as
the more sophisticated XGBoost model. Both models captured trends
and patterns visible in the reference maps; however, the spatial
variability was generally underpredicted.
• The CNN models that used grain IDs as the primary input generally
had the worst predictions among all of the ML and DL models
considered; whereas, the CNNs that used quaternions as input had
the best performance among all of the models. The CNN model
trained using only quaternions, without any other information,
achieved an R2 value of 0.84 and an RMSE value of 16.57 MPa based
on blind predictions of holdout layers in two different MAM build
domains. This confirms that, unlike grain IDs, crystal orientations
provide a physically based input from which relevant information
about crystallographic arrangements and textures can be extracted
and linked to mechanical properties. Based on this conclusion, the
posed hypothesis is conditionally accepted.
• Incorporating progressively informative auxiliary features as input
to the CNN models (using either grain IDs or quaternions as the
primary input) resulted in a slight improvement with the global
loading vector (R2 increase between 0.02 and 0.06), either no
change or worse performance with the Schmid factor (R2 change
between 0.0 and −0.03), and a significant improvement with the
micromechanical Taylor factor (R2 improvement between 0.10 and
0.26).
• The computational time required to predict the entire map of ef-
fective yield strength for one layer in a single build domain was
approximately 85 CPU hours using the elasto-viscoplastic fast
Fourier transform model (i.e., the reference solution) and less than
two seconds on a single processor using Ridge regression, XGBoost,
or CNN models.

The results from this work demonstrate that, once suitably trained,
certain data-driven models could complement physics-driven modeling
by massively expediting structure-property predictions, which could
enable high-throughput predictions of property maps and rapid
screening of MAM builds based on specified property tolerances. Such
capabilities could have significant implications for MAM design, opti-
mization, and qualification. Among all of the data-driven models tested
here, CNN models that use crystal orientation as input provide the best
overall predictions and have the added benefit of requiring little to no
pre-processing for feature extraction.
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